Journal Paper Accepted: An A Priori Analytical Method for the Determination of Operating Reserve Requirements

We are happy to announce that our recent paper entitled: “An A Priori Analytical Method for the Determination of Operating Reserve Requirements”, has been accepted at the International Journal of Electrical Power & Energy Systems (IJEPES). This study comes as a result of collaboration between three universities; Masdar Institute, Dartmouth, and MIT. The work is authored by Aramazd Muzhikyan (Masdar Institute), Prof. Amro M. Farid (Dartmouth) and Prof. Kamal Youcef-Toumi (MIT).

As renewable energy becomes an ever present resource in power systems, so called “operating reserves” become increasingly important instruments for reliable power grid operations. One can think of operating reserves as additional generation capacity scheduled to compensate for real-time power supply and demand imbalances due to the existing uncertainties in forecasting not just demand but also renewable energy. On the one hand, the amount of operating reserves should be sufficient to successfully mitigate the real-time imbalances and maintain power system reliable operations. On the other hand, operating reserves are a costly commodity and they should not exceed the minimum required amount to avoid unnecessary expense. This makes accurate assessment of the operating reserve requirements vital for reliable, economic, and environmentally friendly operation of the power grid.

Currently, the necessary amount of the operating reserves is assessed based upon the power system operator experiences and the assumption that the circumstances of power system operations remain relatively unchanged. However, growing integration of renewable energy sources (RES), implementation of demand side management and transportation electrification alter the overall structure and the dynamics of the power grid. High penetration of RES brings new levels of variability and uncertainty to the grid which challenges the established practices of power system operations and the operating reserve requirement assessment methods. This newly published article provides closed-form analytical formulae that tells grid planners how much reserves to procure as they plan for more renewable energy without sacrificing economics or reliability.

While RES integration can potentially reduce the grid’s CO2 emissions and operating costs, it also brings new challenges that power grid operators need to address in order to maintain reliable operations. Wind power, for example, is known to have high intermittency; that is, the output power of a wind turbine may vary uncontrollably in a wide range. This, combined with comparably low wind forecasting accuracy, requires careful scheduling of traditional power plants and their operating reserves. Integration of solar power, on the other hand, has its own challenges. As shown in the figure below, the net load profile (the power demand minus the solar generation) of a system with integrated solar generation has a distinctive profile. It is often called the “Duck Curve” for its resemblance to the side-profile of a duck. The figure presents the net load profiles of the California Independent System Operator (CAISO) for the day of March 31 for forecasted from 2014 to 2020. The “belly” of the curve corresponds to the day time when the solar generation is at its maximum and is expected to grow with new solar power installations. With an estimated demand of 22,000MW in the year 2020, the solar generation accounts for 10,000MW or 45%; leaving only 12,000MW for the traditional generation. This situation increases the risk of overgeneration and solar generation curtailment. Another challenge is the steep jump of the net load around 6pm as solar generation wanes with the sunset and demand picks up for evening home life. Such severe variations of the net load require more careful consideration of the ramping capabilities of the scheduled generation.

duck

The CAISO duck chart (source: P. Denholm, M. O’Connell, G. Brinkman, and J. Jorgenson, “Overgeneration from Solar Energy in California: A Field Guide to the Duck Chart,” National Renewable Energy Laboratory, Nov. 2015)

This publication has developed analytical formulae for calculation of the requirements for each type of operating reserves; namely, load following, ramping and regulation. The derivations show that the operating reserve requirements are effectively defined by a set of dimensionless parameters related to the RES characteristics and the operations of the power grid. Those parameters are the penetration level, renewable energy capacity factor, variability, day-ahead and short-term forecast errors of the integrated RES, and the power grid day-ahead scheduling and real-time balancing time steps. Such analytical expressions reveal how the requirements of each type of reserve will change when, for instance, more renewable energy is integrated, renewable energy forecasting accuracy is improved, and the day-ahead scheduling time step is reduced. This study show that higher RES variability significantly increases the requirements of all three types of reserves. Also, while the impact of the RES forecast error on the ramping reserve requirement is negligible, its impact on the load following and regulation reserve requirements can dominate that of the variability. On the other hand, reducing the day-ahead scheduling time step can mitigate the impact of the variability on the load following reserve requirement while having negligible impact on the ramping and regulation reserve requirements. Also, changing the balancing time step has no noticeable impact on the load following reserve requirement, it has opposing impacts on the ramping and regulation reserve requirements. Reducing the balancing time step reduces the regulation reserve requirement but increases the ramping reserve requirement.

These formulae can be used for renewable energy integration studies, such as those conducted in NE-ISO and PJM-ISO, to assess the required amount of reserves for the planned RES installation. They can also be adapted by the state and federal standards organizations to establish reserve procurement standards that reflect the evolution of the power grid.

In depth materials on LIINES smart power grid research can be found on the LIINES website.

 LIINESLogo3

Follow LIINES Blog on WordPress.com

Share this post:

Prof. Amro M. Farid contributes to World Wind Energy Association Report

The World Wind Energy Association (WWEA) technical committee has recently published a report entitled “Wind Energy 2050: On the shape of near 100% RE grid”, which studies the challenges of wind energy integration into the power grid and discusses some of the solutions to address these challenges. Chapters 5 and 6 of this report are based upon the work of Dr. Amro M. Farid and discuss the evolution the power grid as it accommodates increasing capacities of wind energy.

Wind and solar energy have already become mainstream energy sources in some regions of the world. While the integration of wind energy has numerous benefits, it also creates new challenges for power system operations. Wind energy is inherently variable and, in order to successfully accommodate it, the power system has to undergo a dramatic change.   Furthermore, and in contrast to the traditional thermal generation units, wind energy sources are non-dispatchable in the traditional sense, meaning their outputs cannot be set to the desired value. As a result, the integration of wind energy requires new approaches to power grid planning and management, including investments into improved wind forecasting techniques and reconsidering operating reserve requirements.

A conventional power system consists of relatively few centralized and dispatchable generation units, and a large number of distributed and stochastic (but accurately forecastable) loads. The electricity is delivered from the centralized and predominantly thermal power plants to the distributed electrical loads. During many decades of operations, power system operators and utilities have developed improved methods for performing their tasks. Generation scheduling and dispatch, reserve management and control technologies have matured. Load forecasting accuracy has improved significantly, reducing forecast errors to as low as a few percent. Power system security and reliability standards have also evolved accordingly.

Six key drivers currently govern the evolution of the grid, namely environment protection, reliability concerns, renewable energy integration, transportation electrification, consumer participation and power market deregulation. This evolution will lead to a diversification of the power grid energy portfolio to include more solar, wind, energy storage and demand-side resources. Thus, the newly emerging operation procedures will not only engage with generators but also with consumers and other ancillary units. As a result, the already existing control technologies and procedures will expand significantly in both number and type.  This will challenge the basic assumptions of power system design and operations. Therefore, the question is not how to mitigate wind variability, but rather how the power grid should evolve to successfully accommodate a high penetration of wind energy.

Governed by these drivers, power system generation and consumption will evolve towards more equal roles in grid operations.  First, from the perspective of dispatchability, wind energy sources resemble traditional consumption in that they are non-dispatchable and forecasted. On the other hand, the introduction of demand response creates makes some portion of the energy consumption dispatchable much like traditional power generation facilities. These two trends change the balance of dispatchability and forecastability as shown in Table 1. Second, the integration of wind energy, like most renewable energy sources, changes the spatial distribution of the generation. Wind energy sources can vary from several kWs to hundreds of MWs.  While larger facilities will continue to be installed centrally into the transmission system, the smaller facilities will be installed at the power grid periphery as distributed generation.  (See Figure 2).  This creates the potential for upstream flow in the distribution system, which was not generally allowed before, and requires the redesign of the protection system accordingly.

GridPortfolio

Table 1: Future grid generation and demand portfolio

gridstructure

Figure 2: Graphic representation of the evolving power grid structure

While many power grid phenomena overlap, the literature has traditionally treated them strictly separately. The evolution of the power grid necessitates reconsidering the distinction between  timescales.   It also requires revisiting the distinction between the transmission and distribution systems. In advocating for power grid enterprise control, our work encourages holistic approaches that work across time scales as well as the fully supply chain of electricity including both the transmission as well as the distribution system.

This work also moves away from the traditional classification of technical and economic control objectives and utilizes the concept of integrated enterprise control as a strategy for enabling holistic techno-economic performance of wind integration. As shown in Figure 3, the power system is modeled as a cyber-physical system, where the physical integration of wind energy and demand-side resources must be assessed in the context of the control, automation, and information technologies. The horizontal axis represents the energy value chain from the generation to the consumption. Finally, the third axis classifies both the generation and the consumption into dispatchable as well as stochastic units. This graph represents the scope of the power system that must address a complex mix of technological, system and societal objectives.

gridcyberphysical

Figure 3: Electrical power grid as a cyber-physical system

This work also moves away from the traditional classification of technical and economic control objectives and utilizes the concept of integrated enterprise control as a strategy for enabling holistic techno-economic performance of wind integration. As shown in Figure 3, the power system is modeled as a cyber-physical system, where the physical integration of wind energy and demand-side resources must be assessed in the context of the control, automation, and information technologies. The horizontal axis represents the energy value chain from the generation to the consumption. Finally, the third axis classifies both the generation and the consumption into dispatchable as well as stochastic units. This graph represents the scope of the power system that must address a complex mix of technological, system and societal objectives.

In depth materials on LIINES smart power grid research can be found on the LIINES website.

 LIINESLogo3

Follow LIINES Blog on WordPress.com

Share this post:

Prof. Amro M. Farid joins the University of Massachusetts Transportation Center as an affiliated Researcher

We are happy to announce that Prof. Amro M. Farid has joined the University of Massachusetts Transportation Center (UMTC) as an affiliated researcher.  The announcement can be found as a blog post here.  By entering the UMTC affiliated researcher network, the LIINES and UMTC will be able to more closely collaborate on interesting transportation research.  Naturally, some of these areas include transportation electrification, intelligent transportation systems, and connected & automated vehicles.
The University of Massachusetts Transportation Center (UMTC) is located at the University of Massachusetts – Amherst, 214 Marston Hall. The UMTC conducts research on all aspects of Transportation including Travel Behavior, Transportation Modeling, Sustainability, Freight, Transit, Intelligent Transportation Systems, Optimization, Transportation Finance and Policy, Emission Estimation and Modeling, Commercial Motor Vehicle research, Safety, Human Factors, GIS, Climate Change and Economic Development.
The UMTC is funded in part by the MassDOT, New England Transportation Consortium and National UTC Consortiums.
In depth materials on LIINES electrified transportation systems research can be found on the LIINES website.
LIINESLogo3

Follow LIINES Blog on WordPress.com

Share this post:

Prof. Amro M. Farid presents at Transactive Energy Systems Conference

On Tuesday May 17, 2016, Prof. Amro M. Farid presented at the Third International Conference and Workshop on Transactive Energy Systems in Portland, Oregon.   The presentation entitled:  “Microgrids as a Key Enabling Transactive Energy Technology for Resilient Self-Healing Power Grid Operation” featured some of the LIINES’ recent research on resilience in power systems.

Building upon the recent IEEE Vision for Smart Grid Controls, the presentation advocated the concept of resilience self-healing operation in future power grids.  This continues to be an important area of LIINES research and has been the subject of several recent blogposts.  (See here, here and here).  The concept of resilient power systems effectively means that healthy regions of the grid can continue to operate while disrupted and perturbed regions bring themselves back to normal operation.   A key technology enabling this resilience is microgrids because they are often able to island themselves from the rest of the grid and continue to operate successfully.   In this presentation, the microgrids were controlled with a transactive energy control architecture that couples several control layers to achieve both technical reliability as well as cost effectiveness.  Furthermore, the presentation showed the ability for several microgrids to self-coordinate so as to demonstrate “strength-in-numbers” when adverse power grid conditions like net load ramps and variability arise.   The presentation concluded with the need for significant new research where transactive energy control concepts are intertwined with recent work on power grid enterprise control.

 

In depth materials on LIINES smart power grid research can be found on the LIINES website.

LIINESLogo3

Follow LIINES Blog on WordPress.com

Share this post:

Prof. Amro M. Farid gives invited lecture at ITE 2016 Northeastern Annual Meeting

On May 11, 2016, Prof. Amro M. Farid gave an invited lecture at the Institute for Transportation Engineers 2016 Northeastern Annual Meeting held in Portsmouth, NH.  The presentation entitled:  “Intelligent Transportation-Energy Systems for Massively Electrified Transportation Infrastructure” featured many of the LIINES’ research on electrified transportation systems.

The presentation advocated the concept of “Intelligent Transportation Energy Systems” which has been the subject of several recent blogposts.  (See here, here, and here).  Electrified modes of transportation: vehicles, buses and trains fundamentally couple the transportation and power grids.   This coupling presents new challenges in the operation of each system which would not have existed if each was operated independently.  At its core, the ITES requires a new transportation electrification assessment methodology that draws upon microscopic traffic simulation, power grid dynamics, and Big Data-Driven use case modeling.  Such an ITES would come to include coupled operations management decisions including:  vehicle dispatching, charging queue management, coordinated charging, and vehicle-to-grid ancillary services.   The presentation concludes with simulation results from the first full scale electric vehicle integration study which was recently conducted for a taxi-fleet use case in Abu Dhabi.

In depth materials on LIINES electrified transportation system research can be found on the LIINES website.

WhiteLogo2

Follow LIINES Blog on WordPress.com

Share this post:

Prof. Amro M. Farid gives invited lecture at UVIG

On April 27th, 2016, Prof. Amro M. Farid gave an invited lecture at the Utility Variable-Generation Integration Group (UVIG) Spring Technical Workshop held in Sacramento, CA.  The presentation entitled:  “Enterprise Control as a Holistic Assessment Method for Variable Generation & Demand Response Integration” featured many of the LIINES’ research on renewable energy integration assessment methodologies.

The presentation advocated the concept of “Power Grid Enterprise Control” which has been the subject of several recent blogposts.  (See here and here).  Traditionally, power system operation & control methods are conducted individually.  In contrast, “Power Grid Enterprise Control” integrates these methods into a single simulation of how a power system enterprise behaves as a physical power grid tied to multiple layers of control, optimization and market behavior.  Such an integrated approach provides techno-economic performance results of the power grid.  Furthermore, it highlights trade-off decisions between technical reliability and cost performance.  The presentation showed how enterprise control simulation can be used to study renewable energy, energy storage, and demand-side energy resources.

In depth materials on LIINES smart grid research can be found on the LIINES website.

WhiteLogo2

Follow LIINES Blog on WordPress.com

Share this post:

Journal Paper accepted at IEEE Transactions on Industrial Informatics – An Axiomatic Design of a Multi-Agent Reconfigurable Mechatronic System Architecture

The LIINES is pleased to announce the acceptance of the paper “An Axiomatic Design of a Multi-Agent Reconfigurable Mechatronic System Architecture” to the IEEE Transactions on Industrial Informatics. The paper is authored by Prof. Amro M. Farid and Prof. Luis Ribeiro.

Recent trends in manufacturing require production facilities to produce a wide variety of products with an increasingly shorter product lifecycle. These trends force production facilities to adjust and redesign production lines on a more regular basis.

Reconfigurable manufacturing systems are designed for rapid change in structure; in both hardware and software components to address the required changes in production capacity and functionality.

Qualitative methods have recently been successful in achieving reconfigurability through multi-agent systems (MAS). However, their implementation remains limited, as an unambiguous quantitative reference architecture for reconfigurability has not yet been developed.

A design methodology based on quantitative reconfigurability measurement would facilitate a logical, and seamless transition between the five stages of the MAS design methodology, as shown below.

DesMethodology

Previous work on the reconfigurability of automated manufacturing systems has shown that reconfigurability depends primarily on architectural decisions made in stages 1, 2, 3, and 5. Operational performance of the manufacturing system after the reconfiguration is also important, but is often overlooked by the existing literature. As a result, it’s not clear:

  1. The degree to which existing designs have achieved their intended level of reconfigurability.
  2. Which systems are quantitatively more reconfigurable.
  3. How these designs may overcome their inherent design limitations to achieve greater reconfigurability in subsequent design iterations.

In order to address the previously mentioned issues with existing design methodologies, this paper develops a multi-agent system reference architecture for reconfigurable manufacturing systems driven by a quantitative and formal design approach, directly in line with the above Figure.

The paper uses Axiomatic Design for Large Flexible Engineering Systems to support a well-conceptualized architecture, which is necessary for excellent production system performance. Additionally, Axiomatic Design highlights potential design flaws at an early conceptual stage. This results in the first formal and quantitative reference architecture based on rigorous mathematics.

About the Author

Wester C.H. Schoonenberg completed his B.Sc. in Systems Engineering and Policy Analysis Management at Delft University of Technology in 2014. After his bachelors’ degree, Wester started his graduate work for the LIINES at Masdar Institute, which he continues as a doctoral student at Thayer School of Engineering at Dartmouth College in 2015. Currently, Wester is working on the integrated operation of electrical grids and production systems with a special interest in Zero Carbon Emission Manufacturing Systems.

A full reference list of LIINES publications can be found here:
WhiteLogo2

Follow LIINES Blog on WordPress.com

Share this post:

Congratulations to Deema F. Allan for a Successful M.Sc. Thesis Defense!

The LIINES wants to congratulate Deema F. Allan with a successful defense of her master thesis entitled: Enhance Electric Vehicle Adoption Scenarios for Abu Dhabi Road Transportation. Deema joined the LIINES in 2014 to work on transportation electrification.   The past two and a half years Deema has progressed the research in the lab incredibly as a result of her admirable dedication and perseverance. We wish Deema all the best in her future work and we are confident that her passion will lead to great achievements.

A full reference list of LIINES publications can be found here:
WhiteLogo2

Follow LIINES Blog on WordPress.com

Share this post:

Journal Paper Accepted at Renewable & Sustainable Energy Reviews – Job Creation Potentials and Skill Requirements in PV, CSP, Wind, Water-to-Energy and Energy Efficiency Value Chains

The LIINES is pleased to announce the publication of the journal paper entitled: “Job Creation Potentials and Skill Requirements in PV, CSP, Wind, Water-to-Energy and Energy Efficiency Value Chains” to the journal of Renewable and Sustainable Energy Reviews. This paper was authored by T. M. Sooriyaarachchi, I-Tsung Tsai, Sameh El Khatib, Amro M. Farid and Toufic Mezher.

Job creation is a significant outcome of the development and deployment of renewable energy (RE) and energy efficiency (EE) technologies. With the complicated dynamics related to job creation in RE and EE technologies, this paper considers direct, indirect as well as induced employment opportunities resulting from various sustainable energy sectors.

This paper explores the factors affecting job creation, existing techniques for establishing the job creation potentials, and the required skill sets in the sustainable energy sectors namely; solar PV power, Concentrated Solar Power (CSP), wind power, waste-to-energy, and energy efficiency measures. In addition, it provides case studies showcasing the variation of job creation in Germany, Spain, the United States, and the Middle Eastern region.

Picture1

Figure 1: This figure represents available jobs within various renewable energy sectors. The figure was prepared by the International Renewable Energy Agency (IRENA) for the Renewable Energy and Jobs Annual Review 2015 IRENA Policy Day 9 June, 2015. Note that Solar Photovoltaic is the leading employer in the renewable energy sector.

For the RE sector, the study shows that available jobs and required skill sets heavily rely on the technology value chains of the specific industry. A further breakdown of the value chains allows for categorization of these jobs on account of their stability and permanency. On the other hand, jobs within the EE sector fall within educational awareness programs, energy efficient policies and regulations, and energy efficiency retrofitting which includes conducting energy audits and re-designing buildings to apply the necessary energy efficient measures.

The Input-Output matrix and Employment factor methods are considered in assessing the gross and net employment impacts of renewable energy deployment. The paper shows that employment factors vary widely based on the region studied, the size of the RE project, and the decomposition of the value chain. In this paper, employment potential is measured based on capacity installed, money invested or number of temporary and permanent jobs created per year.

The paper also provides a breakdown of skill types and levels required within the various sustainable energy sectors. Additionally, it outlines reasons for skill gaps within these RE sectors and provides recommendations on how to bridge such gaps. It observes that skill shortages or surpluses occur mainly due to poor coordination between RE development initiatives and skill providers such as educational institutions. Planning ahead within the RE and EE sectors to ensure better coordination is therefore, highly recommended.

As for the case studies, it is clear that the PV solar industry is at the forefront of job creation in the RE sector. This article shows the high growth potential of the solar PV industry and thus it’s greater opportunity for job creation. In the United States, energy efficiency strategies are predicted to create more than 4-billion job-years by 2030. Given the renewable energy targets and plans set forth by several countries in the Middle Eastern region, a lot of direct and indirect job opportunities are expected to be created in the coming years.

In analyzing the potential of job creation within the RE sectors, the article recognizes that indirect job losses resulting from phasing out fossil fuels, and the increasing electricity prices play a significant role in determining the actual net employment potential of the RE sector. On the other hand, this paper predicts the continued growth in job creation within the EE sector especially given the necessity for energy efficient measures to aid in curbing climate change.

About the Author:
Steffi Muhanji is completing her bachelor of engineering degree at Thayer School of Engineering at Dartmouth College. Her research interests are in renewable energy systems and electric microgrids. Steffi will be pursuing her PhD at the Thayer School of Engineering starting this fall with Prof. Amro M. Farid as her research adviser.
A full reference list of LIINES publications can be found here:
WhiteLogo2
Share this post:

Journal Paper Accepted at Journal of Enterprise Transformation – Axiomatic Design Based Human Resources Management for the Enterprise Transformation of the Abu Dhabi Healthcare Labor Pool

The LIINES is happy to announce the publication of the paper entitled: “Axiomatic Design Based Human Resources Management for the Enterprise Transformation of the Abu Dhabi Healthcare Labor Pool” to the Journal of Enterprise Transformation.  The paper is authored by Prof. Inas Khayal and Prof. Amro M. Farid.  To our knowledge, it’s the first regional-scale multi-decade Big Data Healthcare Human Resources Management Study ever conducted and shows the spatial-distribution of retention and attrition rates of the Abu Dhabi Healthcare System in recent decades.
The quality and reliability of a nation’s healthcare system is often driven by the number and diversity of its healthcare professionals. Unfortunately, many developing nations have constrained segments of highly skilled labor and must “import” this human capital. Volatility in key healthcare professions can threaten reliable and sustainable healthcare delivery.
This article considers the development of a healthcare human resources sector in a quickly developing nation as an enterprise transformation problem. In this article, the axiomatic design large flexible system modeling framework is used to assess healthcare delivery capability in Abu Dhabi, UAE.
The Abu Dhabi case study shows significant volatility in the healthcare labor market.
Specifically the evolution of healthcare professional attrition has been on the rise for the last 20 years.
Fig1
This has caused the net evolution of healthcare professionals to be quite variable.
 Fig2
The below figure shows the variation of profession types across the different areas with most of the fulfillment only in the cities (Abu Dhabi and Al Ain).
Fig3
The work demonstrates that the axiomatic design theory as applied to large flexible systems can be applied to data-centric methods in human resources management in the context of skills shortages and high attrition rates.
About the Author:
Inas Khayal is an Assistant Professor of Health Policy and Clinical Practice at The Dartmouth Institute within the Geisel School of Medicine at Dartmouth.  Her research interests focuses on on developing systems solutions that curb the growth of chronic disease by apply systems engineering tools and techniques to medicine.
A full reference list of LIINES publications can be found here:    WhiteLogo2
Share this post:

Subscribe

Enter your email address to receive notifications of new posts by email.

Join 7 other subscribers