Home » 2015
Yearly Archives: 2015
Journal Paper Accepted at Applied Energy Journal – Demand Side Management in a Day-Ahead Wholesale Market: A Comparison of Industrial & Social Welfare Approaches
The LIINES is pleased to announce the acceptance of the paper entitled: “Demand Side Management in a Day-Ahead Wholesale Market: A Comparison of Industrial & Social Welfare Approaches” to Applied Energy Journal for publication. The paper is authored by Bo Jiang, Prof. Amro M. Farid, and Prof. Kamal Youcef-Toumi.
The intermittent and unpredictable nature of renewable energy brings operational challenges to electrical grid reliability. The fast fluctuations in renewable energy generation require high ramping capability which must be met by dispatchable energy resources. In contrast, Demand Side management (DSM) with its ability to allow customers to adjust electricity consumption in response to market signals has been recognized as an efficient way to shape load profiles and mitigate the variable effects of renewable energy as well as to reduce system costs. However, the academic and industrial literature have taken divergent approaches to DSM implementation. While the popular approach among academia adopts a social welfare maximization formulation, defined as the net benefit from electricity consumption measured from zero, the industrial practice introduces an estimated baseline. This baseline represents the counterfactual electricity consumption that would have occurred without DSM, and customers are compensated according to their load reduction from this predefined electricity consumption baseline.
In response to the academic and industrial literature gap, our paper rigorously compares these two different approaches in a day-ahead wholesale market context. We developed models for the two methods using the same mathematical formalism and compared them analytically as well as in a test case using RTS-1996 reliability testing system. The comparison of the two models showed that a proper reconciliation of the two models might make them dispatch in fundamentally the same way, but only under very specific conditions that are rarely met in practice. While the social welfare model uses a stochastic net load composed of two terms, the industrial DSM model uses a stochastic net load composed of three terms including the additional baseline term. While very much discouraged, customers have an implicit incentive to surreptitiously inflate the administrative baseline in order to receive greater financial compensation. An artificially inflated baseline is shown to result in a higher resource dispatch and higher system costs.
The high resource scheduling due to inflated baseline likely require more control activity in subsequent layers of enterprise control including security constrained economic dispatch and regulation service layer. Future work will continue to explore the technical and economic effects of erroneous industrial baseline.
About the Author:
Bo Jiang conducted this research in collaboration with her Master’s thesis advisor Prof. Amro M. Farid and Prof. Kamal Youcef-Toumi at Massachusetts Institute of Technology. Her research interests include renewable energy integration, power system operations and optimization. Bo is now pursuing her PhD at MIT Mechanical Engineering Department.
A full reference list of Smart Power Grids and Intelligent Energy Systems research at LIINES can be found on the LIINES publication page: http://engineering.dartmouth.edu/liines
LIINES Website: http://engineering.dartmouth.edu/liines
Energy-Water-Food Nexus Research Integral to the IEEE Smart Cities Conference
- The presentation entitled “Extending the Energy-Water Nexus Reference Architecture to the Sustainable Development of Agriculture, Industry & Commerce.” provided a high level overview of the types of couplings that exist not just within the energy and water infrastructure but also within end-uses in the agricultural, industrial, commercial, and residential sectors. Water and energy balance principles were used to systematically highlight the existence of trade-off decisions with the energy-water nexus.
- The presentation entitled “Extending the Utility Analysis and Integration Model at the Energy Water Nexus” featured LIINES research done in collaboration with the Water Environment Foundation (WEF). This work argued the need for integrated enterprise management systems within the water utility sector to support sustainable decision-making.
- The presentation entitled “The Role of Resource Efficient Decentralized Wastewater Treatment in Smart Cities” featured LIINES research done in collaboration with the German startup Ecoglobe. This work argued the need for resource-efficient decentralized wastewater treatment facilities as a key enabling technology in the energy-water-food nexus. It then presented Ecoglobe’s WaterbaseTM as such a technology.
A full reference list of energy-water nexus research at the LIINES can be found on the LIINES publication page: http://engineering.dartmouth.edu/liines
LIINES Website: http://engineering.dartmouth.edu/liines
IEEE Smart Cities Conference Establishes Itself as Premier Conference
LIINES Website: http://engineering.dartmouth.edu/liines
Searching for Smart City LIINES
- Smart Grids
- Internet of Things (IoT)
- Smart Homes & Buildings
- Smart Transport
- Smart Environment,
- Smart Manufacturing & Logistics
- Open Data
- Smart Health
- Smart Citizens
LIINES Website: http://engineering.dartmouth.edu/liines
The All-New Dartmouth LIINES Website
LIINES Website: http://engineering.dartmouth.edu/liines
The LIINES seeks Quantitatively-Minded Dartmouth Undergrad for Smart Grid Research Competition
Interested students may contact Prof. Amro M. Farid for further information and an interview.
LIINES Website: http://amfarid.scripts.mit.edu
Journal Paper Accepted at Springer’s Intelligent Industrial Systems Journal: Multi-Agent System Design Principles for Resilient Coordination & Control of Future Power Systems
The LIINES is pleased to announce the acceptance of the paper: “Multi-Agent System Design Principles for Resilient Coordination & Control of Future Power Systems” in Springer’s Intelligent Industrial Systems Journal. The paper is authored by Amro M. Farid and was published online at May 28th 2015.
Recently, the vision of academia and industry has converged, defining future power system as intelligent, responsive, dynamic, adaptive, and flexible. This vision emphasizes the importance of resilience as a “smart grid” property. It’s implementation remains as a cyber-physical grand challenge.
Power grid resilience allows healthy regions to continue normal operation while disrupted or perturbed regions bring themselves back to normal operation. Previous literature has sought to achieve resilience with microgrids capable of islanded operation enabled by distributed renewable energy resources. These two factors require a holistic approach to managing a power system’s complex dynamics. In our recent work (e.g. link 1 and link 2), we have proposed as means of integrating a power system’s multiple layers of control into a single hierarchical control structure.
In addition to enterprise control, it is important to recognize that resilience requires controllers to be available even if parts of the power grid are disrupted. Therefore, distributed control systems, and more specifically Multi-Agent Systems have often been proposed as the key technology for implementing resilient control systems. Multi-agent systems are commonly used to distribute a specific decision-making algorithm such as those in market negotiation and stability control. However, very few have sought to apply multi-agent systems to achieve a resilient power system.
The purpose of the paper entitled “Multi-Agent System Design Principles for Resilient Coordination & Control of Future Power Systems” is two fold. First, it seeks to identify a set of Multi-Agent System design principles for resilient coordination and control. Second, the paper assesses the adherence of existing Multi-Agent System implementations in the literature with respect to those design principles.
The set of design principles is based on newly developed resilience measures for Large Flexible Engineering Systems. These measures use Axiomatic Design and are directly applicable to the power grid’s many types of functions and its changing structure. These design principles, when followed, guide the conception of a multi-agent system architecture to achieve greater resilience.
About the author: Wester C.H. Schoonenberg completed his B.Sc. in Systems Engineering and Policy Analysis Management at Delft University of Technology in 2014. After his bachelors’ degree, Wester started his graduate work for the LIINES at Masdar Institute, which he continues as a doctoral student at Thayer School of Engineering at Dartmouth College in 2015. Currently, Wester is working on the integrated operation of electrical grids and production systems with a special interest in Zero Carbon Emission Manufacturing Systems.
LIINES Website: http://amfarid.scripts.mit.edu
The LIINES is moving to Dartmouth
- commits to three research areas; two of which include complex systems and energy.
- organizes itself as a single school of engineering rather than departments; thus enabling research and teaching in engineering systems.
- maintains a strong commitment to teaching; ranking first nationally for five out of the last 6 years.
- maintains a healthy relationship with the social sciences within the larger liberal arts university; thus situating today’s engineering systems challenges within their social context
- emphasizes the role of entrepreneurial innovation in engineering; truly embracing the “empowering your network” ethos.
LIINES Website: http://amfarid.scripts.mit.edu
Journal Paper Accepted at the Journal of Intelligent Manufacturing: Measures of reconfigurability and its key characteristics in intelligent manufacturing systems
The LIINES is pleased to announce that the Journal of Intelligent Manufacturing has accepted our paper entitled: “Measures of reconfigurability and its key characteristics in intelligent manufacturing systems”. The paper is authored by Amro M. Farid and was published in October 2014.
Many manufacturing challenges arise with the global trend of increased competition in the marketplace. Production processes must deal with shorter product lifecycles and mass-customization. Consequently, production systems need to be quickly and incrementally adjusted to meet the ever-changing products. Reconfigurable manufacturing systems have been proposed as a solution that facilitates changing production processes for highly automated production facilities.
Much research has been done in the field of reconfigurable manufacturing systems. Topics include: modular machine tools and material handlers, distributed automation, artificially intelligent paradigms, and holonic manufacturing systems. While these technological advances have demonstrated robust operation and been qualitatively successful in achieving reconfigurability, there has been comparatively little attention devoted to quantitative design methodologies of these reconfigurable manufacturing systems and their ultimate industrial adoption remains limited.
Measuring reconfigurability of manufacturing systems quantitatively has been a major challenge in the past, since a quantitative reconfigurability measurement process was non-existent. Earlier work developed a measurement method that extracts measurables from the production shop floor. When this was established, basic measures of reconfiguration potential and reconfiguration ease were developed, based on axiomatic design for large flexible engineering systems and the design structure matrix respectively.
Reconfiguration of a production process can be split up in four steps: Decide which configuration, Decouple, Reorganize, and Recouple. The larger the number of elements in the system, the more configurations are made possible. This is measured using the reconfiguration potential measure, based on axiomatic design for large flexible engineering systems.
Production processes contain multiple interfaces within themselves. Multiple layers of control can be distinguished, that have to work together to coordinate the physical components. These interfaces are the main determinants for the reconfiguration ease measure.
This paper combines these techniques to define a quantitative measure for reconfigurability and its key characteristics of integrability, convertibility and customization. The intention behind this research contribution is that it may be integrated in the future into quantitative design methodologies for reconfigurable manufacturing systems, which may be easily adopted by industrial automation and production companies.
About the author: Wester Schoonenberg completed his B.Sc. in Systems Engineering and Policy Analysis Management at Delft University of Technology in 2014. After his bachelors’ degree, Wester started his M.Sc. at Masdar Institute of Science & Technology. Currently, Wester is working on the integrated operation of electrical grids and production systems with a special interest in the demand side management of industrial facilities.
LIINES Website: http://amfarid.scripts.mit.edu
Journal Paper Accepted at IEEE Transactions on Industrial Electronics: An Enterprise Control Assessment Method for Variable Energy Resource Induced Power System Imbalances. Part 2: : Parametric Sensitivity Analysis
We are happy to announce that our recent paper entitled: “An Enterprise Control Assessment Method for Variable Energy Resource Induced Power System Imbalances. Part 2: Parametric Sensitivity Analysis”, has been accepted to IEEE Transaction on Industrial Electronics. The paper is authored by Aramazd Muzhikyan, Prof. Amro M. Farid and Prof. Youcef Kamal-Toumi.
The variable and uncertain nature of the variable energy resources (VER) introduces new challenges to the balancing operations, contributing to the power system imbalances. To assess the impact of VER integration on power system operations, similar statistical methods have been used by renewable energy integration studies. The calculations are based on either the net load variability or the forecast error, and use the experience of power system operations. However, variability and forecast error are two distinguishing factors of VER and both should be taken into consideration when making assessments.
This paper uses the methodology from the prequel to systematically study the VER impact on power system load following, ramping and regulation reserve requirements. While often ignored, the available ramping reserve reflects the generation flexibility and is particularly important in the presence of VER variability. This provides a detailed insight into the mechanisms by which the need for additional reserves emerges. The concept of enterprise control allows studying the impact of power system temporal parameters as well as net load variability and forecast error holistically.
The application of an enterprise control assessment framework allows the empirical identification of the most influential parameters different types of resource requirements. The inclusion of the power system temporal parameters, such as day-ahead market (SCUC) and real-time market (SCED) time steps, is a particularly distinguishing feature of the work. Use of the case-independent methodology allows generalization of the results and prediction of how the system resource requirements change when one of the parameters varies. Moreover, the results reveal the degree of importance of each lever for the power system reliable operations which is crucial for the strategic planning of the grid modernization.