Home » Smart Grid (Page 2)

Category Archives: Smart Grid

Energy-Water-Food Nexus Research Integral to the IEEE Smart Cities Conference

In addition to its overall success, the IEEE Smart Cities Conference also presented significant research on the Energy-Water-Food Nexus.
On Monday, a two-hour energy-water nexus special session was held featuring multiple aspects of LIINES research.
  • The presentation entitled “Extending the Energy-Water Nexus Reference Architecture to the Sustainable Development of Agriculture, Industry  & Commerce.” provided a high level overview of the types of couplings that exist not just within the energy and water infrastructure but also within end-uses in the agricultural, industrial, commercial, and residential sectors.  Water and energy balance principles were used to systematically highlight the existence of trade-off decisions with the energy-water nexus.
  • The presentation entitled “Extending the Utility Analysis and Integration Model at the Energy Water Nexus” featured LIINES research done in collaboration with the Water Environment Foundation (WEF).   This work argued the need for integrated enterprise management systems within the water utility sector to support sustainable decision-making.
  • The presentation entitled “The Role of Resource Efficient Decentralized Wastewater Treatment in Smart Cities” featured LIINES research done in collaboration with the German startup Ecoglobe.  This work argued the need for resource-efficient decentralized wastewater treatment facilities as a key enabling technology in the energy-water-food nexus.  It then presented Ecoglobe’s WaterbaseTM as such a technology.
On Wednesday, a three hour workshop entitled “Smart Food at the University of Guadalajara (UDG)”  was lead by Diana Romero and Prof. Victor Larios.   It featured the university’s efforts to bring hydroponic farming to future cities.  The workshop also highlighted the UDG’s collaboration with the MIT Media Laboratory’s City Farm Initiative.
Both sessions drew participation of 40-50 conference attendees and active dialogue during the Q&A sessions.  It is clear that a smart city — by all definitions — is one that actively manages the supply and demand for energy, water, and food as an integral activity.   These two sessions demonstrated this need and looks to become a central theme within the IEEE Smart Cities Initiative and its flagship international conferences.

A full reference list of energy-water nexus research at the LIINES can be found on the LIINES publication page:  http://engineering.dartmouth.edu/liines

WhiteLogo2
Share this post:

IEEE Smart Cities Conference Establishes Itself as Premier Conference

Several days ago, we wrote a blog post to announce the beginning of the First IEEE Smart Cities Conference in Guadalajara, Mexico.   Now that the conference draws to a close, we can firmly say that the conference by all measures has been a tremendous success.  The conference had over 500 registered participants drawing from academia, industry, and government — fully in agreement with the triple-helix model of innovation.  From industry, dozens attended from IBM and Intel alone.   The conference also benefited from the presence of the Governor of Jalisco, The Honorable, Aristóteles Sandoval, as well as several generous industrial sponsors.
The conference also distinguished itself for its focus on civic engagement, entrepreneurship, and innovation.   Aside from the ample opportunity for networking and lively conversation, the conference featured a “Student Hackathon”.   For two days, student teams were challenged to develop, in real-time, cloud-based Smart City Apps on iOS and Android platforms.  The winning teams developed apps for smart transportation, healthcare, and community service and won monetary prizes of 500 & 1000USD.  The LIINES wishes these teams all the best as they form small businesses to bring their apps to the market.
With such participation, and despite the landfall of Hurricane Patricia only 24 hours earlier, it is clear that the First International IEEE Smart Cities Conference has established itself as a premier international conference and the flagship of the IEEE Smart Cities Initiative.  Please do stay tuned for announcements for the 2nd International IEEE Smart Cities Conference to be held in the idyllic mountain city of Trento, Italy in September 2016.  Interested readers can join the IEEE Smart City Initiative and its associated LinkedIn group.
WhiteLogo2
Share this post:

Searching for Smart City LIINES

Today, Monday October 26th 2015, the first International Smart Cities Conference begins in Guadalajara, Mexico and will continue until Wednesday October 28th.  It is the premier annual conference sponsored by the IEEE Smart Cities Initiative.  Smart Cities are innovative, conceptual, and city-wide technology-human-infrastructure integration platforms.  The conference brings a broad perspective to Smart Cities drawing from a variety of disciplines.  This is evidenced by its 9 tracks including:
  1. Smart Grids
  2. Internet of Things (IoT)
  3. Smart Homes & Buildings
  4. Smart Transport
  5. Smart Environment,
  6. Smart Manufacturing & Logistics
  7. Open Data
  8. Smart Health
  9. Smart Citizens
Here, at the LIINES, the concept of Smart Cities is one to which we have been paying attention for quite some time.  Naturally, with the four research themes of Smart Power Grids, Energy-Water Nexus, Transportation-Electrification Systems, and Industrial Energy Management, we believe that the LIINES has a lot to contribute to the development of intelligent infrastructure in cities of the future.   Prof. Amro M. Farid has been nominated to the IEEE Smart Cities Conference steering committee and also serves as the Workshop & Tutorials co-chair.  He is also track chair for the Smart Grids track to be held all day today.
Interested readers can join the IEEE Smart City Initiative and its associated LinkedIn group.   Additionally, the conference organizers will be live-tweeting on Twitter #IEEESmartCities, #ISC2.  Join us in the developing the Smart Cities of the Future.
WhiteLogo2
Share this post:

The All-New Dartmouth LIINES Website

In  a recent blogpost, we wrote how the LIINES is moving to Darmouth.  Naturally, when a lab moves so does its website!   The new LIINES website will now be found at http://engineering.dartmouth.edu/liines but will continue to be mirrored at the original MIT website (http://amfarid.scripts.mit.edu) in recognition of our continued collaborative research there.
We look forward to updating the LIINES website to reflect the lab’s continued development.
WhiteLogo2
Share this post:

The LIINES seeks Quantitatively-Minded Dartmouth Undergrad for Smart Grid Research Competition

The LIINES seeks 1-2 quantitatively-minded Dartmouth undergrads for participation in a smart grid research competition.  This work is a direct extension of our prior work in the smart power grid research theme.   The competition involves multi-agent system negotiation techniques as applied to power system operations and management.  The work can serve as part of a senior thesis or an undergraduate research opportunity.
The successful student(s) will be driven by a sincere interest in the smart grid field and have an affinity to object-oriented programming.   Engineering science or computing science majors are preferred although preparations in heavily computational disciplines such as physics, applied mathematics, and economics are welcome.  A prior portfolio in an object-oriented programming language is required.  C++ is specifically preferred.   More senior undergraduate students are preferred although initiative, interest, and programming fluency will be the determining criteria.

Interested students may contact Prof. Amro M. Farid for further information and an interview. 

WhiteLogo2
Share this post:

Journal Paper Accepted at Springer’s Intelligent Industrial Systems Journal: Multi-Agent System Design Principles for Resilient Coordination & Control of Future Power Systems

The LIINES is pleased to announce the acceptance of the paper: “Multi-Agent System Design Principles for Resilient Coordination & Control of Future Power Systems” in Springer’s Intelligent Industrial Systems Journal. The paper is authored by Amro M. Farid and was published online at May 28th 2015.

Recently, the vision of academia and industry has converged, defining future power system as intelligent, responsive, dynamic, adaptive, and flexible. This vision emphasizes the importance of resilience as a “smart grid” property. It’s implementation remains as a cyber-physical grand challenge.

Power grid resilience allows healthy regions to continue normal operation while disrupted or perturbed regions bring themselves back to normal operation. Previous literature has sought to achieve resilience with microgrids capable of islanded operation enabled by distributed renewable energy resources. These two factors require a holistic approach to managing a power system’s complex dynamics. In our recent work (e.g. link 1 and link 2), we have proposed as means of integrating a power system’s multiple layers of control into a single hierarchical control structure.

In addition to enterprise control, it is important to recognize that resilience requires controllers to be available even if parts of the power grid are disrupted. Therefore, distributed control systems, and more specifically Multi-Agent Systems have often been proposed as the key technology for implementing resilient control systems. Multi-agent systems are commonly used to distribute a specific decision-making algorithm such as those in market negotiation and stability control. However, very few have sought to apply multi-agent systems to achieve a resilient power system.

The purpose of the paper entitled “Multi-Agent System Design Principles for Resilient Coordination & Control of Future Power Systems” is two fold. First, it seeks to identify a set of Multi-Agent System design principles for resilient coordination and control. Second, the paper assesses the adherence of existing Multi-Agent System implementations in the literature with respect to those design principles.

The set of design principles is based on newly developed resilience measures for Large Flexible Engineering Systems. These measures use Axiomatic Design and are directly applicable to the power grid’s many types of functions and its changing structure. These design principles, when followed, guide the conception of a multi-agent system architecture to achieve greater resilience.

About the author: Wester C.H. Schoonenberg completed his B.Sc. in Systems Engineering and Policy Analysis Management at Delft University of Technology in 2014. After his bachelors’ degree, Wester started his graduate work for the LIINES at Masdar Institute, which he continues as a doctoral student at Thayer School of Engineering at Dartmouth College in 2015. Currently, Wester is working on the integrated operation of electrical grids and production systems with a special interest in Zero Carbon Emission Manufacturing Systems.

Screen Shot 2015-02-07 at 11.38.55

LIINES Website: http://amfarid.scripts.mit.edu

Share this post:

The LIINES is moving to Dartmouth

After four years at the Masdar Institute of Science and Technology, the Laboratory for Intelligent Integrated Networks of Engineering Systems is moving to the Thayer School of Engineering at Dartmouth!  The move comes as Amro M. Farid assumes his new appointment as an Associate Professor of Engineering at the Thayer School.
As one of the prestigious Ivy League universities, Dartmouth is consistently ranked amongst America’s top dozen universities.  Moreover, the Thayer School of Engineering has several features that when taken together make a well-customized home for the LIINES.   It:
As the LIINES makes its move to Dartmouth, its important to reflect upon some of its achievements in the last four years.  From its initial focus on smart power grids, it’s research program has expanded to address the application of control, automation and information technology to intelligent energy systems.  This has meant the development of three additional research themes namely:
These efforts have lead to several notable outputs.  In research publications, these include 17 journal papers since January 2014 with an average impact factor of 3.874, 2 books, 4 book chapters and 43 conference papers.  In teaching, two new courses were developed ESM 501 System Architecture and ESM 616 Techno-Economic Analysis in Power System Operations.  We are happy that students at the Masdar Institute consistently rated both of these courses highly.  The LIINES has also increasingly taken on an international profile with active leadership in the IEEE Control Systems Society (CSS) Technical Committee on Smart Grids, the IEEE Systems, Man & Cybernetics (SMC) Society Technical Committee on Intelligent Industrial Systems, and the Council of Engineering System Universities (CESUN).
Of course, the LIINES’s productivity is largely due to its students.  And so this is also a moment to recognize their hard work and dedication.  This began with the 2013 cohort  Apoorva Santhosh, Reshma Francy, Reem Al Junaibi, Aramazd Muzhikyan continued to William Lubega in 2014 and more recently Deema Allan, Wester Schoonenberg, and Halima Abdulla.  Thanks to the support of Prof. Kamal Youcef-Toumi, their MIT student colleagues Hussein Abdelhalim, Fang-Yu Liu, and Bo Jiang have also been instrumental in fostering a collaborative international atmosphere despite the time zone hurdles.  Each of these students has made strong research contributions to the growth of the lab and have gone on to successful careers beyond graduation.
Going forward, the LIINES will continue to work in the intelligent energy systems area as part of the Thayer School’s commitment to energy and complex systems.   That said, the LIINES members at Masdar will remain as such and will continue their research in the spirit of international collaboration as their MIT student colleagues have done in the past.  Dr. Toufic Mezher, Professor of Engineering Systems & Management has kindly agreed to coordinate the LIINES student members as they complete their degrees.   Naturally, we will also continue to  collaboration with the MIT Mechanical Engineering Department and more specifically Prof. Kamal Youcef-Toumi, the Mechatronics Research Laboratory and the Center for Clean Water & Energy.
We’re looking forward to an exciting new 2015-16 academic year at the LIINES.  Stay tuned for more!
Share this post:

Journal Paper Accepted at IEEE Transactions on Industrial Electronics: An Enterprise Control Assessment Method for Variable Energy Resource Induced Power System Imbalances. Part 2: : Parametric Sensitivity Analysis

We are happy to announce that our recent paper entitled: “An Enterprise Control Assessment Method for Variable Energy Resource Induced Power System Imbalances. Part 2: Parametric Sensitivity Analysis”, has been accepted to IEEE Transaction on Industrial Electronics. The paper is authored by Aramazd Muzhikyan, Prof. Amro M. Farid and Prof. Youcef Kamal-Toumi.

The variable and uncertain nature of the variable energy resources (VER) introduces new challenges to the balancing operations, contributing to the power system imbalances. To assess the impact of VER integration on power system operations, similar statistical methods have been used by renewable energy integration studies. The calculations are based on either the net load variability or the forecast error, and use the experience of power system operations. However, variability and forecast error are two distinguishing factors of VER and both should be taken into consideration when making assessments.

This paper uses the methodology from the prequel to systematically study the VER impact on power system load following, ramping and regulation reserve requirements. While often ignored, the available ramping reserve reflects the generation flexibility and is particularly important in the presence of VER variability. This provides a detailed insight into the mechanisms by which the need for additional reserves emerges. The concept of enterprise control allows studying the impact of power system temporal parameters as well as net load variability and forecast error holistically.

The application of an enterprise control assessment framework allows the empirical identification of the most influential parameters different types of resource requirements. The inclusion of the power system temporal parameters, such as day-ahead market (SCUC) and real-time market (SCED) time steps, is a particularly distinguishing feature of the work. Use of the case-independent methodology allows generalization of the results and prediction of how the system resource requirements change when one of the parameters varies. Moreover, the results reveal the degree of importance of each lever for the power system reliable operations which is crucial for the strategic planning of the grid modernization.

errDAImpactResSTD scedImpactRegSTD

Share this post:

Duke Energy on Analytics and the Internet of Things

It’s been a long time since 2003 when the concept of the Internet of Things was first proposed by U. of Cambridge Auto-ID Laboratory.  At the time, Dr. Amro M. Farid, now head of the Laboratory for Intelligent Integrated Networks of Engineering Systems, was a doctoral student investigating how RFID technology enabled intelligent products within reconfigurable manufacturing systems.  The Internet of Things was being applied primarily in the manufacturing and supply chain domain.

Since then, the Internet of Things concept has taken hold not just in manufacturing systems and supply chains but nearly every industrial system domain including energy.    Every “thing” or “device” has the potential to be connected via an intelligent sensor so as to make decisions — be they centralized within an operations control center — or distributed amongst artificially intelligent multi-agent systems.   The Internet of Things concept has the potential to fundamentally transform industrial systems.

Have a look at Duke Energy’s take on the Internet of Things:

The LIINES is proud to have been working in this area since its inception and continue to do so.  More information on our research can be found on the LIINES website.

WhiteLogo2

LIINES Websitehttp://amfarid.scripts.mit.edu

Share this post:

Journal Paper Accepted at ISA Transaction: Event Triggered State Estimation Techniques for Power Systems with Integrated Variable Energy Resources

The LIINES is happy to announce that ISA Transactions has accepted our recent paper entitled: Event Triggered State Estimation Techniques for Power Systems with Integrated Variable Energy Resources.  The paper is authored by Reshma C. Francy, Prof. Amro M. Farid and Prof. Kamal Youcef-Toumi.
In recent years, we have had the opportunity to contribute to two large studies that present visions of the future smart grid:  The MIT Future of the Electric Grid Study, and the IEEE Vision for Smart Grid Controls: 2030 and Beyond.  Both of these works emphasized that in order for the future grid to be truly smart, it has to be responsive, dynamic, adaptive and flexible.  This is the case even when highly variable renewable energy sources sources are plugged in.   The first step in achieving this vision is having greater “situational awareness” — knowing what is going on when and where in the grid.
OCC
For decades, state estimation has been a critical technology in achieving such situational awareness for power system operators.   Over time, it has become quite the mature technology. But, the integration of renewable energy changes all that.  Not only does it introduce rapidly changing behavior into the grid; but it also does so in the low voltage distribution system where state estimation is not usually applied.   The conventional solution is to not just monitor the grid faster but also for the entire power grid all the way down to the low voltages.  That means that not only do all the power grid’s measurements have to be gathered from across power grid’s geography but they also have to computed at an ever faster rate.   This is an exponentially growing problem  — hardly a solution befitting a future “smart” grid.
This paper seeks to address these two requirements in a practical way.   The idea is to use a concept called “event-triggering”.  It takes advantage of the fact that the wind doesn’t always blow and the sun doesn’t always shine.  When local power grid conditions are highly variable, say at a wind turbine or solar panel, a “trigger” will kick in telling the state estimator to run.  But when the power grid is relatively stable, the new state estimator will use a simplified linear approach based upon the last time the full state estimator was run.  Relative to traditional state estimation, this simple solution has been shown to reduce computational time by 90% in numerical case studies.
While ultimately, in the long term, the smart grid will require a fundamental “rethink” in how to approach state estimation, monitoring, and situational awareness, this solution demonstrates how traditional state estimation techniques can be enhanced for future smart grid applications.
A full reference list of smart grid research at LIINES can be found on the LIINES publication page: http://amfarid.scripts.mit.edu

WhiteLogo2

LIINES Website: http://amfarid.scripts.mit.edu

Share this post:

Subscribe

Enter your email address to receive notifications of new posts by email.

Join 592 other subscribers