Home » Posts tagged 'Axiomatic Design for Large Flexible Systems'
Tag Archives: Axiomatic Design for Large Flexible Systems
Journal Paper Accepted: Opportunities for energy-water nexus management in the Middle East and North Africa
by Brian Keare
We are happy to announce that our paper “Opportunities for Energy-Water Nexus management in the Middle East and North Africa”, has been accepted for publication by the academic journal Elementa: Science of the Anthropocene. This study was the result of collaboration between William N. Lubega (Illinois at Urbana-Champaign) and Prof. Amro M. Farid and William W. Hickman (Dartmouth).
Electric power is required to produce, treat, distribute, and recycle water while water is required to generate and consume electricity. Naturally, this energy-water nexus is most evident in multi-utilities that provide electricity and water but still exists when the nexus has distinct organizations as owners and operators. Therefore, the sustainability question that arises from energy-water trade-offs and synergies is very much tied to the potential for economies of scope.
Furthermore, in the Middle East and North Africa (MENA) region, multi-utilities are not only common, but also the nexus is particularly exacerbated by the high energy intensity of the water supply due to limited fresh water resources. Several accelerating trends are increasingly stressing the existing supply systems of MENA countries: Increased demand due to population and economic growth, a more extreme and unpredictable climate mostly affecting water supply and power demand, and multiple drivers for more electricity-intensive water and more water-intensive electricity including aging infrastructure and certain regulations and standards. This paper identifies and motivates several opportunities for enhanced integrated operations management and planning in the energy-water nexus in multi-utilities in the MENA.
From the discussion of the coupling points between the energy and water systems and operations management strategies to optimize these coupling points, several policy implementations can be drawn. First, the existing approaches to dispatch of the individual products of power and water could be replaced by integrated energy-water dispatch. Second, existing fixed power and water purchase agreements can be replaced with a seamlessly integrated energy-water dispatch. As in liberalized power systems, multiple time horizon markets with their respective clearing mechanisms would be required so as to provide dynamic incentives for greater cost and resource efficiency. Fourth, the energy-water nexus also presents coupling points that engage the demand side of both power and water. Carefully designed demand-side management schemes, perhaps in the form of public-private partnerships, could present a vehicle for coordinating these coupling points in a cost-effective fashion.
The report also leads to several central policy implications. First, if water consumption and withdrawal of power generation were monetized, the investment case for renewable energy would inevitably be a stronger one. Next, while reverse osmosis desalination plants limit the energy-intensity of water production, from an integrated systems perspective, multi-stage flash plants provide a coproduction functionality that may be preferred over individual reverse osmosis and power generation facilities. Third, while many water utilities across the region have made extensive efforts towards reducing water leakages, such efforts could be strengthened by considering the embedded energy and the associated economic and environmental cost of these leakages. Lastly, there exists both a necessity and opportunity to reduce the energy footprint of water supply in MENA countries through increased water recycling. Utilizing a decentralized treatment system providing multiple water qualities and treatment levels will allow more opportunities for recycled water use in industry, agriculture, and other areas.
In all, the integrated energy-water nexus planning models and optimization programs presented and cited in this work provide deeper perspectives than their single product alternatives found in the existing literature. Their application in the policy domain has a high potential for future work and extension in the MENA region. Furthermore, these techniques have the potential for use in regions of similar climate (e.g. South-West United States & Australia) or other electricity-water utilities around the globe.
In depth materials on LIINES energy-water nexus research can be found on the LIINES websitte.
Journal Paper Accepted: Symmetrica: Test Case for Tansportation Electrification Research
The LIINES is happy to announce that our recent paper entitled: “Symmetrica: Test Case for Tansportation Electrification Research” has been published in the journal Infrastructure Complexity. Written by Prof. Amro M. Farid, this paper presents a test case for electric vehicle integration studies.
Electrified transportation has emerged in recent years as a means to reduce CO2 emissions and support energy efficiency. For this trend to succeed in the long term, electric vehicles must be integrated into the infrastructure systems that support them. Electric vehicles couple two such large systems; the transportation system and the electric power system into a nexus.
Electric vehicle integration, much like solar PV and wind integration years ago, has been fairly confined to small fleets of tens of vehicles. Such small pilot projects do not present a significant technical challenge. Their large scale adoption, however, must be carefully studied to avoid degrading overall infrastructure performance. Transportation electrification test cases serve to study infrastructure behavior well before reaching a full deployment of electric vehicles. Such a test case would resemble those often used in power systems engineering to serve methodological development in the design, planning, and operation of such systems.
The arguments for a test case to study the transportation electricity nexus are five-fold. First, a standardized test case is required to test, and compare analytical methods. In power systems, test cases served an essential role in the maturation of power flow analysis, stability studies, and contingency analysis. The transportation-electricity nexus will ultimately also require similar assessments. Secondly, using real data from critical infrastructure may be imprudent. For example, real data may reveal weak points in a power system which may be exploited by unauthorized personnel. Thirdly, a test case serves to support fundamental understanding by broadening intuition development. For the transportation-electricity nexus, understanding the effect of increasingly interdependent dynamics, will result in new requirements for optimization and control for its planning and operation. Naturally, this new found intuition serves the fourth reason of methodological development. A test case serves facilitates the design, planning, and operation of the system before it is built. Unexpected behaviors may be identified in an early stage and can subsequently be avoided or mitigated. Finally, the privacy of personal data is protected through using a test case. Transportation simulation requires microscopic data (tracking each vehicle through a full day’s events), which raises grave privacy and ethical concerns if real data is used.
To address these needs, the proposed test case includes three structural descriptions: a transportation system topology, an electric power topology, and a charging system topology. Additional data includes transportation demand and charging demand. The test case consists of a number of desirable characteristics, including completeness, functional heterogeneity, moderate size, regular topology, regular demand data, realism, and objectivity. The figure below shows the three topologies; a fully detailed description test casenamed ‘Symmetrica’ is available in the paper.
The transportation electrification test case can potentially be used for research within planning and operation management applications. A recent study (Al Junaibi et al. 2013) showed that the planning of the charging system as the couple of two infrastructure systems highly impacts the overall performance of the transportation electrification nexus. Matching the spatial layout of charging infrastructure to the demand for electrified transportation is key a infrastructure developent challenge. Furthermore, investment costs to upgrade power lines and transformers must be matched to the expected adoption of electric vehicles, providing an interesting starting point for return-on-investment and operations research methods. Using operation management applications such as charging station queue management or vehicle-2-grid stabilization could optimize the integration of electric vehicles within the nexus. Opportunities such as these present rich applications areas which have the potential to significant reduce the extra expenditure in infrastructure investments.
In depth materials on LIINES electrified transportation systems research can be found on the LIINES websitte.
Journal Paper accepted at IEEE Transactions on Industrial Informatics – An Axiomatic Design of a Multi-Agent Reconfigurable Mechatronic System Architecture
The LIINES is pleased to announce the acceptance of the paper “An Axiomatic Design of a Multi-Agent Reconfigurable Mechatronic System Architecture” to the IEEE Transactions on Industrial Informatics. The paper is authored by Prof. Amro M. Farid and Prof. Luis Ribeiro.
Recent trends in manufacturing require production facilities to produce a wide variety of products with an increasingly shorter product lifecycle. These trends force production facilities to adjust and redesign production lines on a more regular basis.
Reconfigurable manufacturing systems are designed for rapid change in structure; in both hardware and software components to address the required changes in production capacity and functionality.
Qualitative methods have recently been successful in achieving reconfigurability through multi-agent systems (MAS). However, their implementation remains limited, as an unambiguous quantitative reference architecture for reconfigurability has not yet been developed.
A design methodology based on quantitative reconfigurability measurement would facilitate a logical, and seamless transition between the five stages of the MAS design methodology, as shown below.
Previous work on the reconfigurability of automated manufacturing systems has shown that reconfigurability depends primarily on architectural decisions made in stages 1, 2, 3, and 5. Operational performance of the manufacturing system after the reconfiguration is also important, but is often overlooked by the existing literature. As a result, it’s not clear:
- The degree to which existing designs have achieved their intended level of reconfigurability.
- Which systems are quantitatively more reconfigurable.
- How these designs may overcome their inherent design limitations to achieve greater reconfigurability in subsequent design iterations.
In order to address the previously mentioned issues with existing design methodologies, this paper develops a multi-agent system reference architecture for reconfigurable manufacturing systems driven by a quantitative and formal design approach, directly in line with the above Figure.
The paper uses Axiomatic Design for Large Flexible Engineering Systems to support a well-conceptualized architecture, which is necessary for excellent production system performance. Additionally, Axiomatic Design highlights potential design flaws at an early conceptual stage. This results in the first formal and quantitative reference architecture based on rigorous mathematics.
About the Author
Wester C.H. Schoonenberg completed his B.Sc. in Systems Engineering and Policy Analysis Management at Delft University of Technology in 2014. After his bachelors’ degree, Wester started his graduate work for the LIINES at Masdar Institute, which he continues as a doctoral student at Thayer School of Engineering at Dartmouth College in 2015. Currently, Wester is working on the integrated operation of electrical grids and production systems with a special interest in Zero Carbon Emission Manufacturing Systems.
Journal Paper Accepted at Journal of Enterprise Transformation – Axiomatic Design Based Human Resources Management for the Enterprise Transformation of the Abu Dhabi Healthcare Labor Pool
Journal Paper Accepted at the Journal of Intelligent Manufacturing: Measures of reconfigurability and its key characteristics in intelligent manufacturing systems
The LIINES is pleased to announce that the Journal of Intelligent Manufacturing has accepted our paper entitled: “Measures of reconfigurability and its key characteristics in intelligent manufacturing systems”. The paper is authored by Amro M. Farid and was published in October 2014.
Many manufacturing challenges arise with the global trend of increased competition in the marketplace. Production processes must deal with shorter product lifecycles and mass-customization. Consequently, production systems need to be quickly and incrementally adjusted to meet the ever-changing products. Reconfigurable manufacturing systems have been proposed as a solution that facilitates changing production processes for highly automated production facilities.
Much research has been done in the field of reconfigurable manufacturing systems. Topics include: modular machine tools and material handlers, distributed automation, artificially intelligent paradigms, and holonic manufacturing systems. While these technological advances have demonstrated robust operation and been qualitatively successful in achieving reconfigurability, there has been comparatively little attention devoted to quantitative design methodologies of these reconfigurable manufacturing systems and their ultimate industrial adoption remains limited.
Measuring reconfigurability of manufacturing systems quantitatively has been a major challenge in the past, since a quantitative reconfigurability measurement process was non-existent. Earlier work developed a measurement method that extracts measurables from the production shop floor. When this was established, basic measures of reconfiguration potential and reconfiguration ease were developed, based on axiomatic design for large flexible engineering systems and the design structure matrix respectively.
Reconfiguration of a production process can be split up in four steps: Decide which configuration, Decouple, Reorganize, and Recouple. The larger the number of elements in the system, the more configurations are made possible. This is measured using the reconfiguration potential measure, based on axiomatic design for large flexible engineering systems.
Production processes contain multiple interfaces within themselves. Multiple layers of control can be distinguished, that have to work together to coordinate the physical components. These interfaces are the main determinants for the reconfiguration ease measure.
This paper combines these techniques to define a quantitative measure for reconfigurability and its key characteristics of integrability, convertibility and customization. The intention behind this research contribution is that it may be integrated in the future into quantitative design methodologies for reconfigurable manufacturing systems, which may be easily adopted by industrial automation and production companies.
About the author: Wester Schoonenberg completed his B.Sc. in Systems Engineering and Policy Analysis Management at Delft University of Technology in 2014. After his bachelors’ degree, Wester started his M.Sc. at Masdar Institute of Science & Technology. Currently, Wester is working on the integrated operation of electrical grids and production systems with a special interest in the demand side management of industrial facilities.
LIINES Website: http://amfarid.scripts.mit.edu
Journal Paper Accepted at ISA Transaction: Event Triggered State Estimation Techniques for Power Systems with Integrated Variable Energy Resources
LIINES Website: http://amfarid.scripts.mit.edu
Prof. Amro M. Farid gives invited lecture at MIT Transportation Seminar Series
On December 5, 2014, Prof. Amro M. Farid gave an invited lecture at the MIT Transportation Seminar Series (Cambridge, MA, USA). The presentation entitled: “Intelligent Transportation-Energy Systems for Future Large Scale Deployment of Electrified Transportation” featured the LIINES’ latest research in transportation electrification.
The presentation advocates an integrated approach to transportation and energy management. At its core, the intelligent transportation energy system (ITES) requires a new transportation electrification assessment methodology that draws upon microscopic traffic simulation, power grid dynamics, and Big Data-Driven use case modeling. Such an ITES would come to include coupled operations management decisions including: vehicle dispatching, vehicle routing, charging queue management, coordinated charging, and vehicle-to-grid ancillary services. The presentation also featured the results from the first full scale electric vehicle integration study which was recently conducted for a taxi-fleet use case in Abu Dhabi. The study suggests a close collaboration between the Abu Dhabi Department of Transportation and the Abu Dhabi Water and Electricity Authority in future large scale deployments of electrified transportation.
The presentation draws heavily from several LIINES publications including the UAE State of Energy Report, the UAE State of the Green Economy Report, the first hybrid dynamic model for transportation electrification. The results of this first full-scale study were first presented publicly at the 2nd IEEE International Conference on Connected Vehicles & Expo held December 2-6, 2013 in Las Vegas, NV, USA, and the Gulf Traffic Conference held December 9-10 2013 in Dubai, UAE. These presentations demonstrated a successful collaborative project between Masdar Institute, the Abu Dhabi Department of Transportation, and Mitsubishi Heavy Industries.
In depth materials on LIINES research on transportation electrification can be found on the LIINES publication page: http://amfarid.scripts.mit.edu
LIINES Website: http://amfarid.scripts.mit.edu
Journal Paper Accepted at Applied Energy Journal: Quantitative engineering systems modeling and analysis of the energy-water nexus
The LIINES is happy to announce that Applied Energy Journal has accepted our recent paper entitled: “Quantitative engineering systems modeling and analysis of the energy–water nexus” for publication. The paper is authored by William N. Lubega and Prof. Amro M. Farid.
Electric power is required to extract, condition, convey, dispose of and recycle water for human use. At the same time, the bulk of global electricity generation capacity uses water as a heat sink or prime mover. This energy-water nexus is of growing importance due to increased demand for water and electricity; distortion of the temporal and spatial availability of fresh water due to climate change; as well as various drivers of more energy-intense water supply for example increased wastewater treatment requirements, and more water-intense electricity generation for example emissions control technologies at power plants.
There are several notable published studies on this nexus. At a technology level, there have been attempts to optimize coupling points between the electricity and water systems to reduce the water-intensity of technologies in the former and the energy-intensity of technologies in the latter. Empirical determinations of the electricity-intensity of water technologies and the water-intensity of electricity technologies have been reported and analyzed. Various models that enable the exploration of the water resource implications of defined electricity sector development pathways and thus support the analysis of various water and electricity policies have also been developed. To our knowledge however, a transparent physics-based approach that interfaces a model of the electricity system to models of the municipal water and wastewater systems enabling an input-output analysis of these three systems in unison has not been presented. Such a modeling approach would support integrated control applications as well as integrated planning without a priori specification of development pathways, for example through optimization.
A paper recently published by the LIINES in Applied Energy titled “Quantitative engineering systems modeling and analysis of the energy–water nexus” presents such a systems-of-system model. In this work, bond graphs are used to develop models that characterize the salient transmissions of matter and energy in and between the electricity, water and wastewater systems as identified in the reference architecture. Bond graphs, which are graphical representations of physical dynamic systems, were chosen as the modeling tool as they facilitate the inter-energy-domain modeling necessitated by the heterogeneous nature of the energy-water nexus. Furthermore they clearly identify causality and readily allow for model enhancement as required by applications. The developed models, when combined, make it possible to relate a region’s energy and municipal water consumption to the required water withdrawals in an input-output model. This paper builds on another LIINES publication entitled “A Reference Architecture for the Energy-Water Nexus” found in the IEEE Systems Journal.
This research is of particular significance to countries in the Gulf Cooperation Council, all of which have limited fresh water resources and thus depend on energy-expensive desalination to meet a large portion of their water needs. This dependence enhances the degree of coupling between the electricity and water systems and thus the associated vulnerability concerns. Furthermore, motivated by the cogeneration of electric power and desalinated water, combined electricity and water authorities have been established in the region. The multi-energy domain model developed in this work is therefore of immediate relevance to the planning and control efforts of these existing institutions.
About the Author:
William N. Lubega conducted this research in collaboration with his Master’s thesis advisor Prof. Amro M. Farid in LIINES at the Masdar Institute of Science & Technology Engineering Systems & Management Department. William is now a doctoral research assistant at the University of Illinois Urbana-Champaign Civil & Environmental Engineering department as part of the Energy-Water-Environment Sustainability Track. There, he continues his energy-water nexus research in the Stillwell Research Group.
A full reference list of energy-water nexus research at LIINES can be found on the LIINES publication page: http://amfarid.scripts.mit.edu
LIINES Website: http://amfarid.scripts.mit.edu
Hybrid Dynamic Model for Transportation Electrification Published at the 2014 American Control Conference
In depth materials on LIINES research on transportation electrification can be found on the LIINES publication page: http://amfarid.scripts.mit.edu
LIINES Website: http://amfarid.scripts.mit.edu
Journal Paper Accepted at the Energy Journal: The Impact of Storage Facility Capacity and Ramping Capabilities on the Supply Side of the Energy-Water Nexus
The LIINES is happy to announce that the Energy Journal has accepted our recent paper entitled: The Impact of Storage Facility Capacity and Ramping Capabilities on the Supply Side of the Energy-Water Nexus. The paper is authored by Apoorva Santhosh, Prof. Amro M. Farid and Prof. Kamal Youcef-Toumi. It builds upon an earlier publication entitled: Real-Time Economic Dispatch for the Supply Side of the Energy-Water Nexus which was summarized in an earlier blog post.
As previous blog posts have discussed, the topic of the energy-water nexus is timely. In the Gulf Cooperation Council nations, it is of particular relevance because of the hot and arid climate. Water scarcity is further aggravated high energy demands for cooling. The GCC nations, however, have a tremendous opportunity in that they often operate their power and water infrastructure under a single operational entity. Furthermore, the presence of cogeneration facilities such as Multi-Stage Flash desalination facilities fundamentally couple the power and water grids.
This paper expands upon the previously published economic dispatch problem to now include the impact of ramping rates and storage capacities. The latter is shown to alleviate binding production constraints and flatten production levels to achieve lower costs. Three cases studies are presented; a base case, a second case inspired by Singapore’s limited water storage availability, and a third case relevant to countries in the Middle East where water storage facilities can be readily constructed. Storage facilities are shown to reduce total operating costs by up to 38% and lead to less variable daily production suggesting that they have an important role to play in the optimization of the energy-water nexus.
A full reference list of energy-water nexus research at LIINES can be found on the LIINES publication page: http://amfarid.scripts.mit.edu
LIINES Website: http://amfarid.scripts.mit.edu