Home » Posts tagged 'Life Cycle Properties'

Tag Archives: Life Cycle Properties

Journal Paper Accepted: The need for holistic enterprise control assessment methods for the future electricity grid

The LIINES is happy to announce the publication of the journal article The need for holistic enterprise control assessment methods for the future electricity grid, by Prof. Amro M. Farid (Dartmouth), Bo Jiang (MIT), Aramazd Muzhikyan (Dartmouth), and Prof. Kamal Youcef-Toumi (MIT) in the journal Renewable and Sustainable Energy Reviews.

In this comprehensive literature-based study, the LIINES presents a logical case for integrating power grid assessment methods into a holistic enterprise control framework.  Such a framework is explicitly techno-economic and merges methods power systems engineering and economics.   To support the argument, the LIINES has conducted the most comprehensive review of renewable energy integration studies completed to date.

The paper discusses the need for change in the assessment of the electricity grid as a result of five driving forces.  The driving forces are identified as: decarbonization, growth of electricity demand, transportation electrification, electric power deregulation, and increasing numbers of responsive (“smart”) consumers.  These five drivers require the steadily increasing penetration of solar and wind generation as well as evolving capabilities to support demand side management for the tremendous diversity of loads that connect to the electrical grid.  The integration of these three new grid technologies of renewable energy, electric vehicles, and demand side resources ultimately imposes fundamental changes to the grid’s structure and behavior.

The paper argues that the future electric grid’s needs for reliability, cost efficiency and sustainability necessitates a holistic assessment approach.  Figure 1 shows a guiding structure that leads to five techno-economic control objectives.  This work also uses five lifecycle properties to integrate rather than decompose the engineering design.  The lifecycle properties core to the power grid are dispatchability, flexibility, forecastability, stability, and resilience. The use of these five properties avoids overlap in function of solutions.

Picture1
Figure 1: Guiding Structure of Argument

Using such a holistic paradigm for techno-economic assessment, the journal paper conducts the most comprehensive review of renewable energy studies completed to date. It found several limitations to the existing renewable energy integration studies. Firstly, in order to address the holistic nature of the power grid, the real potential of demand side resources needs to be included. Additionally, for power grid balancing, validated simulations rather than statistical methods based on questionable assumptions need to be used.  Furthermore, the consistency between future development of the real market structure and modeling methods needs to be assured. Finally, the investment costs related to the support of the future power grid need to be considered in simulation.

Thus, the paper concludes based on the defined model requirements and the assessment of the current literature, that a framework for holistic power grid enterprise control assessment needs to satisfy the following requirements:

  1. Allows for an evolving mixture of generation and demand as dispatchable energy resources
  2. Allows for an evolving mixture of generation and demand as variable energy resources
  3. Allows for the simultaneous study of transmission and distribution systems
  4. Allows for the time domain simulation of the convolution of relevant grid enterprise control functions
  5. Allows for the time domain simulation of power grid topology reconfiguration in operation time scale
  6. Specifically addresses the holistic dynamic properties of dispatchability, flexibility, forecastability, stability, and resilience
  7. Represents potential changes in enterprise grid control functions and technologies as impacts on these dynamic properties
  8. Accounts for the consequent changes in operating cost and the required investment costs.

These requirements have been realized in a power grid enterprise control simulator that was used for an extensive study of renewable energy integration in the power grid [Link 1], [Link 2].  The simulator includes the physical electrical grid layer and incorporates primary, secondary, and tertiary control functions. This model fits the requirements of the holistic enterprise control method as defined previously.

enterprise
 Figure 2: The Enterprise Control Power Grid Simulator

WhiteLIINESLogo

LIINES Website: http://engineering.dartmouth.edu/liines

Share this post:

Prof. Amro M. Farid contributes to World Wind Energy Association Report

The World Wind Energy Association (WWEA) technical committee has recently published a report entitled “Wind Energy 2050: On the shape of near 100% RE grid”, which studies the challenges of wind energy integration into the power grid and discusses some of the solutions to address these challenges. Chapters 5 and 6 of this report are based upon the work of Dr. Amro M. Farid and discuss the evolution the power grid as it accommodates increasing capacities of wind energy.

Wind and solar energy have already become mainstream energy sources in some regions of the world. While the integration of wind energy has numerous benefits, it also creates new challenges for power system operations. Wind energy is inherently variable and, in order to successfully accommodate it, the power system has to undergo a dramatic change.   Furthermore, and in contrast to the traditional thermal generation units, wind energy sources are non-dispatchable in the traditional sense, meaning their outputs cannot be set to the desired value. As a result, the integration of wind energy requires new approaches to power grid planning and management, including investments into improved wind forecasting techniques and reconsidering operating reserve requirements.

A conventional power system consists of relatively few centralized and dispatchable generation units, and a large number of distributed and stochastic (but accurately forecastable) loads. The electricity is delivered from the centralized and predominantly thermal power plants to the distributed electrical loads. During many decades of operations, power system operators and utilities have developed improved methods for performing their tasks. Generation scheduling and dispatch, reserve management and control technologies have matured. Load forecasting accuracy has improved significantly, reducing forecast errors to as low as a few percent. Power system security and reliability standards have also evolved accordingly.

Six key drivers currently govern the evolution of the grid, namely environment protection, reliability concerns, renewable energy integration, transportation electrification, consumer participation and power market deregulation. This evolution will lead to a diversification of the power grid energy portfolio to include more solar, wind, energy storage and demand-side resources. Thus, the newly emerging operation procedures will not only engage with generators but also with consumers and other ancillary units. As a result, the already existing control technologies and procedures will expand significantly in both number and type.  This will challenge the basic assumptions of power system design and operations. Therefore, the question is not how to mitigate wind variability, but rather how the power grid should evolve to successfully accommodate a high penetration of wind energy.

Governed by these drivers, power system generation and consumption will evolve towards more equal roles in grid operations.  First, from the perspective of dispatchability, wind energy sources resemble traditional consumption in that they are non-dispatchable and forecasted. On the other hand, the introduction of demand response creates makes some portion of the energy consumption dispatchable much like traditional power generation facilities. These two trends change the balance of dispatchability and forecastability as shown in Table 1. Second, the integration of wind energy, like most renewable energy sources, changes the spatial distribution of the generation. Wind energy sources can vary from several kWs to hundreds of MWs.  While larger facilities will continue to be installed centrally into the transmission system, the smaller facilities will be installed at the power grid periphery as distributed generation.  (See Figure 2).  This creates the potential for upstream flow in the distribution system, which was not generally allowed before, and requires the redesign of the protection system accordingly.

GridPortfolio

Table 1: Future grid generation and demand portfolio

gridstructure

Figure 2: Graphic representation of the evolving power grid structure

While many power grid phenomena overlap, the literature has traditionally treated them strictly separately. The evolution of the power grid necessitates reconsidering the distinction between  timescales.   It also requires revisiting the distinction between the transmission and distribution systems. In advocating for power grid enterprise control, our work encourages holistic approaches that work across time scales as well as the fully supply chain of electricity including both the transmission as well as the distribution system.

This work also moves away from the traditional classification of technical and economic control objectives and utilizes the concept of integrated enterprise control as a strategy for enabling holistic techno-economic performance of wind integration. As shown in Figure 3, the power system is modeled as a cyber-physical system, where the physical integration of wind energy and demand-side resources must be assessed in the context of the control, automation, and information technologies. The horizontal axis represents the energy value chain from the generation to the consumption. Finally, the third axis classifies both the generation and the consumption into dispatchable as well as stochastic units. This graph represents the scope of the power system that must address a complex mix of technological, system and societal objectives.

gridcyberphysical

Figure 3: Electrical power grid as a cyber-physical system

This work also moves away from the traditional classification of technical and economic control objectives and utilizes the concept of integrated enterprise control as a strategy for enabling holistic techno-economic performance of wind integration. As shown in Figure 3, the power system is modeled as a cyber-physical system, where the physical integration of wind energy and demand-side resources must be assessed in the context of the control, automation, and information technologies. The horizontal axis represents the energy value chain from the generation to the consumption. Finally, the third axis classifies both the generation and the consumption into dispatchable as well as stochastic units. This graph represents the scope of the power system that must address a complex mix of technological, system and societal objectives.

In depth materials on LIINES smart power grid research can be found on the LIINES website.

 LIINESLogo3

Follow LIINES Blog on WordPress.com

Share this post:

Journal Paper accepted at IEEE Transactions on Industrial Informatics – An Axiomatic Design of a Multi-Agent Reconfigurable Mechatronic System Architecture

The LIINES is pleased to announce the acceptance of the paper “An Axiomatic Design of a Multi-Agent Reconfigurable Mechatronic System Architecture” to the IEEE Transactions on Industrial Informatics. The paper is authored by Prof. Amro M. Farid and Prof. Luis Ribeiro.

Recent trends in manufacturing require production facilities to produce a wide variety of products with an increasingly shorter product lifecycle. These trends force production facilities to adjust and redesign production lines on a more regular basis.

Reconfigurable manufacturing systems are designed for rapid change in structure; in both hardware and software components to address the required changes in production capacity and functionality.

Qualitative methods have recently been successful in achieving reconfigurability through multi-agent systems (MAS). However, their implementation remains limited, as an unambiguous quantitative reference architecture for reconfigurability has not yet been developed.

A design methodology based on quantitative reconfigurability measurement would facilitate a logical, and seamless transition between the five stages of the MAS design methodology, as shown below.

DesMethodology

Previous work on the reconfigurability of automated manufacturing systems has shown that reconfigurability depends primarily on architectural decisions made in stages 1, 2, 3, and 5. Operational performance of the manufacturing system after the reconfiguration is also important, but is often overlooked by the existing literature. As a result, it’s not clear:

  1. The degree to which existing designs have achieved their intended level of reconfigurability.
  2. Which systems are quantitatively more reconfigurable.
  3. How these designs may overcome their inherent design limitations to achieve greater reconfigurability in subsequent design iterations.

In order to address the previously mentioned issues with existing design methodologies, this paper develops a multi-agent system reference architecture for reconfigurable manufacturing systems driven by a quantitative and formal design approach, directly in line with the above Figure.

The paper uses Axiomatic Design for Large Flexible Engineering Systems to support a well-conceptualized architecture, which is necessary for excellent production system performance. Additionally, Axiomatic Design highlights potential design flaws at an early conceptual stage. This results in the first formal and quantitative reference architecture based on rigorous mathematics.

About the Author

Wester C.H. Schoonenberg completed his B.Sc. in Systems Engineering and Policy Analysis Management at Delft University of Technology in 2014. After his bachelors’ degree, Wester started his graduate work for the LIINES at Masdar Institute, which he continues as a doctoral student at Thayer School of Engineering at Dartmouth College in 2015. Currently, Wester is working on the integrated operation of electrical grids and production systems with a special interest in Zero Carbon Emission Manufacturing Systems.

A full reference list of LIINES publications can be found here:
WhiteLogo2

Follow LIINES Blog on WordPress.com

Share this post:

Journal Paper Accepted at the Journal of Intelligent Manufacturing: Measures of reconfigurability and its key characteristics in intelligent manufacturing systems

The LIINES is pleased to announce that the Journal of Intelligent Manufacturing has accepted our paper entitled: “Measures of reconfigurability and its key characteristics in intelligent manufacturing systems”. The paper is authored by Amro M. Farid and was published in October 2014.

Many manufacturing challenges arise with the global trend of increased competition in the marketplace.  Production processes must deal with shorter product lifecycles and mass-customization. Consequently, production systems need to be quickly and incrementally adjusted to meet the ever-changing products. Reconfigurable manufacturing systems have been proposed as a solution that facilitates changing production processes for highly automated production facilities.

Much research has been done in the field of reconfigurable manufacturing systems. Topics include: modular machine tools and material handlers, distributed automation, artificially intelligent paradigms, and holonic manufacturing systems.  While these technological advances have demonstrated robust operation and been qualitatively successful in achieving reconfigurability, there has been comparatively little attention devoted to quantitative design methodologies of these reconfigurable manufacturing systems and their ultimate industrial adoption remains limited.

Measuring reconfigurability of manufacturing systems quantitatively has been a major challenge in the past, since a quantitative reconfigurability measurement process was non-existent. Earlier work developed a measurement method that extracts measurables from the production shop floor. When this was established, basic measures of reconfiguration potential and reconfiguration ease were developed, based on axiomatic design for large flexible engineering systems and the design structure matrix respectively.

Reconfiguration of a production process can be split up in four steps: Decide which configuration, Decouple, Reorganize, and Recouple. The larger the number of elements in the system, the more configurations are made possible. This is measured using the reconfiguration potential measure, based on axiomatic design for large flexible engineering systems.

Production processes contain multiple interfaces within themselves. Multiple layers of control can be distinguished, that have to work together to coordinate the physical components. These interfaces are the main determinants for the reconfiguration ease measure.

This paper combines these techniques to define a quantitative measure for reconfigurability and its key characteristics of integrability, convertibility and customization.    The intention behind this research contribution is that it may be integrated in the future into quantitative design methodologies for reconfigurable manufacturing systems, which may be easily adopted by industrial automation and production companies.

About the author: Wester Schoonenberg completed his B.Sc. in Systems Engineering and Policy Analysis Management at Delft University of Technology in 2014. After his bachelors’ degree, Wester started his M.Sc. at Masdar Institute of Science & Technology. Currently, Wester is working on the integrated operation of electrical grids and production systems with a special interest in the demand side management of industrial facilities.

Screen Shot 2015-02-07 at 11.38.55

LIINES Website: http://amfarid.scripts.mit.edu

Share this post:

Prof. Amro M. Farid gives invited lecture at MIT Transportation Seminar Series

On December 5, 2014, Prof. Amro M. Farid gave an invited lecture at the MIT Transportation Seminar Series (Cambridge, MA, USA).   The presentation entitled:  “Intelligent Transportation-Energy Systems for Future Large Scale Deployment of Electrified Transportation” featured the LIINES’ latest research in transportation electrification.

The presentation advocates an integrated approach to transportation and energy management.  At its core, the intelligent transportation energy system (ITES) requires a new transportation electrification assessment methodology that draws upon microscopic traffic simulation, power grid dynamics, and Big Data-Driven use case modeling. Such an ITES would come to include coupled operations management decisions including: vehicle dispatching, vehicle routing, charging queue management, coordinated charging, and vehicle-to-grid ancillary services.  The presentation also featured the results from the first full scale electric vehicle integration study which was recently conducted for a taxi-fleet use case in Abu Dhabi.   The study suggests a close collaboration between the Abu Dhabi Department of Transportation and the Abu Dhabi Water and Electricity Authority in future large scale deployments of electrified transportation.

The presentation draws heavily from several LIINES publications including the UAE State of Energy Report, the UAE State of the Green Economy Report, the first hybrid dynamic model for transportation electrification.  The results of this first full-scale study were first presented publicly at the 2nd IEEE International Conference on Connected Vehicles & Expo held December 2-6, 2013 in Las Vegas, NV, USA, and the Gulf Traffic Conference held December 9-10 2013 in Dubai, UAE.  These presentations demonstrated a successful collaborative project between Masdar Institute, the Abu Dhabi Department of Transportation, and Mitsubishi Heavy Industries.

In depth materials on LIINES research on transportation electrification can be found on the LIINES publication page:  http://amfarid.scripts.mit.edu

WhiteLogo2

LIINES Website: http://amfarid.scripts.mit.edu

Share this post:

Hybrid Dynamic Model for Transportation Electrification Published at the 2014 American Control Conference

Having studied the Abu Dhabi transportation systems for several years, it became clear to us that the true success of electrified transportation was its successful integration with the infrastructure systems that support them.  Left unmanaged electric vehicles may suffer from delays due to charging or cause destabilizing charging loads on the electrical grid. While many works have sought to mitigate these effects with advanced functionality such as coordinated charging, vehicle-to-grid stabilization, and charging queue management, few works have assessed these impacts as a holistic transportation-electricity nexus. To this effect, the 2014 American Control Conference (ACC) has recently published our paper on a hybrid dynamic model for transportation electrification.   Unlike traditional microscopic traffic simulators, this model considers stationary charging and online charging (while moving) as an integral part of the model rather than add-on functionality.  Thus is lends itself to usage by EV fleet operators to not just assess but also improve their operations & control.  It may also be used to coordinate the planning and operation transportation and electrical power infrastructure.

In depth materials on LIINES research on transportation electrification can be found on the LIINES publication page:  http://amfarid.scripts.mit.edu

WhiteLogo2

LIINES Website: http://amfarid.scripts.mit.edu

Share this post:

Dr. Amro M. Farid contributes to Published 2015 UAE State of Energy Report

Following on the heals of the 2015 UAE State of the Green Economy Report,  we, at the LIINES, are happy to announce the release of the 2015 UAE State of Energy Report.  It is the premier benchmark publication for the nation’s energy sector.  This annual report is published by the UAE Ministry of Energy, and is created in collaboration with the United Nations Development Programme (UNDP) and Dubai Carbon. The work opens with states from his highness Sheikh Khalifa bin Zayed Al Nahyan President of the United Arab Emirates, his highness Sheikh Mohammed bin Rashid Al Maktoum, Vice President and Prime Minister of the United Arab Emirates and Ruler of Dubai, his excellency Ban Ki-Moon Secretary-General of the United Nations, his excellency Dr. Sultan Al Jaber UAE Minister of State and Chairman of Masdar, his excellency Dr. Rashid Ahmad bin Fahad Minister of Environment and Water, his excellency Saeed Mohammed al Tayer Vice Chairman of the Dubai Supreme Council of Energy, his excellency Dr. Matar Hamed Al Neyadi Undersecretary of the UAE Ministry of Energy. Also in the report, Dr. Amro M. Farid has authored  “Key Technical Challenges to Electric Vehicle Adoption in the UAE”.  It summarizes many of the conclusions from our transportation electrification research and mentioned in our previous post. The report also includes the work of LIINES alumna Reshma Francy.  She has co-authored two articles. “What are GHG Emission Estimation Methodologies?”  and “Energy Planning, Analysis and Policy Making around GHG Emissions”. For further information on how the LIINES continues to produce energy research relevant to the UAE landscape can be found on the LIINES publication page:   http://amfarid.scripts.mit.edu WhiteLogo2 LIINES Website: http://amfarid.scripts.mit.edu

Share this post:

Dr. Amro M. Farid Contributes to Published 2015 UAE State of the Green Economy Report

We, at the the LIINES, are happy to announce that the 2015 UAE State of the Green Economy Report has not only been published but has also gone viral!  #stateofgreeneconomy.

The Dubai Carbon Center of Excellence coordinated the publication of the UN-backed document which describes opportunities and challenges for the green economy in the global market; focusing on the leadership of the United Arab Emirates.

The work features the commitments and support of his highness Sheikh Mohammed bin Rashid Al Maktoum, Vice President and Prime Minister of the United Arab Emirates and Ruler of Dubai, his highness Sheikh Ahmed bin Saeed Al Maktoum, Chairman of the Dubai Supreme Council of Energy, his excellency Ban Ki-Moon Secretary-General of the United Nations, His Excellency Mohammed Al Gergawi, Minister of Cabinet Affairs in the Federal Government, his excellency Dr. Rashid bin Fahad, Minister of Environment and Water, his excellency Saeed Mohammed Al Tayer, Managing Director and Chief Executive Officer of the Dubai Water & Electricity Authority, and her excellency Helen Clark Administrator of the United Nations Development Programme.

Also in the report, Dr. Amro M. Farid has authored “Electric Vehicles:  Energising the Adoption of Electrified Transportation in a Smart City”.  It summarizes many of the conclusions from our transportation electrification research.  The include five key considerations to energy the adoption of electrified transportation in the Dubai Smart City:

  1. Getting the electric transportation use case right
  2. Getting the charging infrastructure right
  3. Strengthening the existing power infrastructure
  4. Coordinating the planning of transportation and energy infrastructure
  5. Coordinating the operation of transportation and power infrastructure

In depth materis on LIINES research on transportation electrification can be found on the LIINES publication page:  http://amfarid.scripts.mit.edu

WhiteLogo2

LIINES Website: http://amfarid.scripts.mit.edu

Share this post:

Turkish Electric Car w/ 500km Driving Range Hits Roads

At the LIINES, we have been conducting research on Transportation Electrification for quite some time.

At heart of the research is the electric vehicle, and its challenge is that it is both a transportation artifact that exists on our everyday roads as well as an electrical artifact that must connect to the power grid.   In the first full-scale case study of its kind, we have shown in Abu Dhabi that managing this dual nature means ensuring vehicle availability through charging while not imposing overly heavy demands on the grid.

One main challenge of electric vehicles is their driving range.  Many commercially available EVs only have a range of 150km — thus requiring charging once or twice a day.   With charging times of several hours, this means that a typical driver has to think very carefully how and when this EV will be practically used.

In contrast, a recent Turkish Electric Car developed at Istanbul University has demonstrated a 500km driving range in a tour from Istanbul to Ankara.  The “T-1” as the vehicle is called weighs a mere 500 kilograms and has a top speed of 120 kilometers per hour.  And while the vehicle looks sporty sleek, it has not neglected practicality with four seats and enough room for luggage.

With the T-1, the development team builds upon earlier successes including their 8th place finish in the 2009 global electric car competition held in Australia.

 

WhiteLogo2

LIINES Website: http://amfarid.scripts.mit.edu

Share this post:

Abu Dhabi Department of Transportation, Mitsubishi Heavy Industries & Masdar Institute Joint Workshop

Following on the heals of their back-to-back conferences, Reem Al Junaibi and Prof. Amro M. Farid presented the results of their Abu Dhabi Electric Vehicle Technical Feasibility study in a joint workshop including participants from the Abu Dhabi Department of Transportation and Mitsubishi Heavy Industries.  They were joined by Mohammad Al-Hadrami and Prof. Sgouris Sgouridis who also investigated the socio-economic barriers to electric vehicle adoption.  The workshop was held on the Masdar Institute campus on December 17th 2013 and marked the official end to what has been a tremendously successful project demonstrating collaboration between public, private, and academic entities.

After the day-long workshop, Mitsubishi Heavy Industries hosted Masdar Institute and the Abu Dhabi Department of Transportation in a two-day workshop in Malaga, Spain on December 19-20 2013.  Malaga, Spain proudly marks itself as one of Europe’s leading smart cities. The Zem2All project, with the largest deployment of Electric Vehicles, is a testament to this achievement.

Prof. Farid continues to advocate Intelligent Transportation-Energy Systems.  In other words, the intelligent system consisting of monitoring, decision-making and dispatching functionality should have a transportation as well as energy management function.  Efforts are currently underway at the LIINES to develop models and control solutions which may be directly integrated into Intelligent Transportation-Energy Systems.  A full reference list of energy-transportation nexus research at the LIINES can be found on the LIINES publication page: http://amfarid.scripts.mit.edu

WhiteLogo2

LIINES Website: http://amfarid.scripts.mit.edu

Share this post:

Subscribe

Enter your email address to receive notifications of new posts by email.

Join 592 other subscribers