Home » Posts tagged 'Professional Development'

Tag Archives: Professional Development

Prof. Amro M. Farid contributes to World Wind Energy Association Report

The World Wind Energy Association (WWEA) technical committee has recently published a report entitled “Wind Energy 2050: On the shape of near 100% RE grid”, which studies the challenges of wind energy integration into the power grid and discusses some of the solutions to address these challenges. Chapters 5 and 6 of this report are based upon the work of Dr. Amro M. Farid and discuss the evolution the power grid as it accommodates increasing capacities of wind energy.

Wind and solar energy have already become mainstream energy sources in some regions of the world. While the integration of wind energy has numerous benefits, it also creates new challenges for power system operations. Wind energy is inherently variable and, in order to successfully accommodate it, the power system has to undergo a dramatic change.   Furthermore, and in contrast to the traditional thermal generation units, wind energy sources are non-dispatchable in the traditional sense, meaning their outputs cannot be set to the desired value. As a result, the integration of wind energy requires new approaches to power grid planning and management, including investments into improved wind forecasting techniques and reconsidering operating reserve requirements.

A conventional power system consists of relatively few centralized and dispatchable generation units, and a large number of distributed and stochastic (but accurately forecastable) loads. The electricity is delivered from the centralized and predominantly thermal power plants to the distributed electrical loads. During many decades of operations, power system operators and utilities have developed improved methods for performing their tasks. Generation scheduling and dispatch, reserve management and control technologies have matured. Load forecasting accuracy has improved significantly, reducing forecast errors to as low as a few percent. Power system security and reliability standards have also evolved accordingly.

Six key drivers currently govern the evolution of the grid, namely environment protection, reliability concerns, renewable energy integration, transportation electrification, consumer participation and power market deregulation. This evolution will lead to a diversification of the power grid energy portfolio to include more solar, wind, energy storage and demand-side resources. Thus, the newly emerging operation procedures will not only engage with generators but also with consumers and other ancillary units. As a result, the already existing control technologies and procedures will expand significantly in both number and type.  This will challenge the basic assumptions of power system design and operations. Therefore, the question is not how to mitigate wind variability, but rather how the power grid should evolve to successfully accommodate a high penetration of wind energy.

Governed by these drivers, power system generation and consumption will evolve towards more equal roles in grid operations.  First, from the perspective of dispatchability, wind energy sources resemble traditional consumption in that they are non-dispatchable and forecasted. On the other hand, the introduction of demand response creates makes some portion of the energy consumption dispatchable much like traditional power generation facilities. These two trends change the balance of dispatchability and forecastability as shown in Table 1. Second, the integration of wind energy, like most renewable energy sources, changes the spatial distribution of the generation. Wind energy sources can vary from several kWs to hundreds of MWs.  While larger facilities will continue to be installed centrally into the transmission system, the smaller facilities will be installed at the power grid periphery as distributed generation.  (See Figure 2).  This creates the potential for upstream flow in the distribution system, which was not generally allowed before, and requires the redesign of the protection system accordingly.


Table 1: Future grid generation and demand portfolio


Figure 2: Graphic representation of the evolving power grid structure

While many power grid phenomena overlap, the literature has traditionally treated them strictly separately. The evolution of the power grid necessitates reconsidering the distinction between  timescales.   It also requires revisiting the distinction between the transmission and distribution systems. In advocating for power grid enterprise control, our work encourages holistic approaches that work across time scales as well as the fully supply chain of electricity including both the transmission as well as the distribution system.

This work also moves away from the traditional classification of technical and economic control objectives and utilizes the concept of integrated enterprise control as a strategy for enabling holistic techno-economic performance of wind integration. As shown in Figure 3, the power system is modeled as a cyber-physical system, where the physical integration of wind energy and demand-side resources must be assessed in the context of the control, automation, and information technologies. The horizontal axis represents the energy value chain from the generation to the consumption. Finally, the third axis classifies both the generation and the consumption into dispatchable as well as stochastic units. This graph represents the scope of the power system that must address a complex mix of technological, system and societal objectives.


Figure 3: Electrical power grid as a cyber-physical system

This work also moves away from the traditional classification of technical and economic control objectives and utilizes the concept of integrated enterprise control as a strategy for enabling holistic techno-economic performance of wind integration. As shown in Figure 3, the power system is modeled as a cyber-physical system, where the physical integration of wind energy and demand-side resources must be assessed in the context of the control, automation, and information technologies. The horizontal axis represents the energy value chain from the generation to the consumption. Finally, the third axis classifies both the generation and the consumption into dispatchable as well as stochastic units. This graph represents the scope of the power system that must address a complex mix of technological, system and societal objectives.

In depth materials on LIINES smart power grid research can be found on the LIINES website.


Follow LIINES Blog on WordPress.com

Share this post:

Journal Paper Accepted at Renewable & Sustainable Energy Reviews – Job Creation Potentials and Skill Requirements in PV, CSP, Wind, Water-to-Energy and Energy Efficiency Value Chains

The LIINES is pleased to announce the publication of the journal paper entitled: “Job Creation Potentials and Skill Requirements in PV, CSP, Wind, Water-to-Energy and Energy Efficiency Value Chains” to the journal of Renewable and Sustainable Energy Reviews. This paper was authored by T. M. Sooriyaarachchi, I-Tsung Tsai, Sameh El Khatib, Amro M. Farid and Toufic Mezher.

Job creation is a significant outcome of the development and deployment of renewable energy (RE) and energy efficiency (EE) technologies. With the complicated dynamics related to job creation in RE and EE technologies, this paper considers direct, indirect as well as induced employment opportunities resulting from various sustainable energy sectors.

This paper explores the factors affecting job creation, existing techniques for establishing the job creation potentials, and the required skill sets in the sustainable energy sectors namely; solar PV power, Concentrated Solar Power (CSP), wind power, waste-to-energy, and energy efficiency measures. In addition, it provides case studies showcasing the variation of job creation in Germany, Spain, the United States, and the Middle Eastern region.


Figure 1: This figure represents available jobs within various renewable energy sectors. The figure was prepared by the International Renewable Energy Agency (IRENA) for the Renewable Energy and Jobs Annual Review 2015 IRENA Policy Day 9 June, 2015. Note that Solar Photovoltaic is the leading employer in the renewable energy sector.

For the RE sector, the study shows that available jobs and required skill sets heavily rely on the technology value chains of the specific industry. A further breakdown of the value chains allows for categorization of these jobs on account of their stability and permanency. On the other hand, jobs within the EE sector fall within educational awareness programs, energy efficient policies and regulations, and energy efficiency retrofitting which includes conducting energy audits and re-designing buildings to apply the necessary energy efficient measures.

The Input-Output matrix and Employment factor methods are considered in assessing the gross and net employment impacts of renewable energy deployment. The paper shows that employment factors vary widely based on the region studied, the size of the RE project, and the decomposition of the value chain. In this paper, employment potential is measured based on capacity installed, money invested or number of temporary and permanent jobs created per year.

The paper also provides a breakdown of skill types and levels required within the various sustainable energy sectors. Additionally, it outlines reasons for skill gaps within these RE sectors and provides recommendations on how to bridge such gaps. It observes that skill shortages or surpluses occur mainly due to poor coordination between RE development initiatives and skill providers such as educational institutions. Planning ahead within the RE and EE sectors to ensure better coordination is therefore, highly recommended.

As for the case studies, it is clear that the PV solar industry is at the forefront of job creation in the RE sector. This article shows the high growth potential of the solar PV industry and thus it’s greater opportunity for job creation. In the United States, energy efficiency strategies are predicted to create more than 4-billion job-years by 2030. Given the renewable energy targets and plans set forth by several countries in the Middle Eastern region, a lot of direct and indirect job opportunities are expected to be created in the coming years.

In analyzing the potential of job creation within the RE sectors, the article recognizes that indirect job losses resulting from phasing out fossil fuels, and the increasing electricity prices play a significant role in determining the actual net employment potential of the RE sector. On the other hand, this paper predicts the continued growth in job creation within the EE sector especially given the necessity for energy efficient measures to aid in curbing climate change.

About the Author:
Steffi Muhanji is completing her bachelor of engineering degree at Thayer School of Engineering at Dartmouth College. Her research interests are in renewable energy systems and electric microgrids. Steffi will be pursuing her PhD at the Thayer School of Engineering starting this fall with Prof. Amro M. Farid as her research adviser.
A full reference list of LIINES publications can be found here:
Share this post:

Journal Paper Accepted at Journal of Enterprise Transformation – Axiomatic Design Based Human Resources Management for the Enterprise Transformation of the Abu Dhabi Healthcare Labor Pool

The LIINES is happy to announce the publication of the paper entitled: “Axiomatic Design Based Human Resources Management for the Enterprise Transformation of the Abu Dhabi Healthcare Labor Pool” to the Journal of Enterprise Transformation.  The paper is authored by Prof. Inas Khayal and Prof. Amro M. Farid.  To our knowledge, it’s the first regional-scale multi-decade Big Data Healthcare Human Resources Management Study ever conducted and shows the spatial-distribution of retention and attrition rates of the Abu Dhabi Healthcare System in recent decades.
The quality and reliability of a nation’s healthcare system is often driven by the number and diversity of its healthcare professionals. Unfortunately, many developing nations have constrained segments of highly skilled labor and must “import” this human capital. Volatility in key healthcare professions can threaten reliable and sustainable healthcare delivery.
This article considers the development of a healthcare human resources sector in a quickly developing nation as an enterprise transformation problem. In this article, the axiomatic design large flexible system modeling framework is used to assess healthcare delivery capability in Abu Dhabi, UAE.
The Abu Dhabi case study shows significant volatility in the healthcare labor market.
Specifically the evolution of healthcare professional attrition has been on the rise for the last 20 years.
This has caused the net evolution of healthcare professionals to be quite variable.
The below figure shows the variation of profession types across the different areas with most of the fulfillment only in the cities (Abu Dhabi and Al Ain).
The work demonstrates that the axiomatic design theory as applied to large flexible systems can be applied to data-centric methods in human resources management in the context of skills shortages and high attrition rates.
About the Author:
Inas Khayal is an Assistant Professor of Health Policy and Clinical Practice at The Dartmouth Institute within the Geisel School of Medicine at Dartmouth.  Her research interests focuses on on developing systems solutions that curb the growth of chronic disease by apply systems engineering tools and techniques to medicine.
A full reference list of LIINES publications can be found here:    WhiteLogo2
Share this post:

ESM 616: Techno-Economic Analyses in Power System Operations

To start off the new semester, we have just developed a page for the ESM 616 Techno-Economic Analyses in Power System Operations class.  The subject seeks to prepare students for the new world of “smart grid” operations.  It specifically seeks to contrast conventional paradigms of power system operations and control with those that will appear in the coming decades.   Emphasis is placed on interdisciplinary, holistic approaches founded upon industrial application and mathematical rigor.  See the LIINES Blog Keywords:  ADWEA — Abu Dhabi Water & Electricity Authority, CIGRE, Control Systems Engineering, DEWA — Dubai Water & Electricity Authority, Dynamic Systems Modeling, Enterprise Control, Graph Theory, IEEE, IEEE CSS, Large Complex Systems, Model-Based Systems Engineering, Operations Research, Power System Economics

Good luck to all as we kick off the Spring Semester.


LIINES Website: http://amfarid.scripts.mit.edu

Share this post:

ESM 501 Systems Architecture

To start off the new semester, we have just developed a page for the ESM 501 System Architecture class.  The subject addresses one of the first stages of system design, analysis and engineering.  Emphasis is placed on engineering systems which include technical, economic and social aspects.  This blog does often discuss subjects related to systems architecture.  See the LIINES Blog Keywords:  Axiomatic Design, Axiomatic Design for Large Flexible Systems, Design Methodologies, Enterprise Control, Graph Theory, Life Cycle Properties, Model-Based Systems Engineering, Socio-Techno-Economic Systems, and SysML.

Additionally, a new page has been added to overview our other taught courses.

Good luck to all as we kick off the Fall Semester.


LIINES Website: http://amfarid.scripts.mit.edu

Share this post:

Mendeley @ the LIINES

Reference management is a key competence in any research group or laboratory.   Think of a research workflow.

  1. Get papers
  2. Get paper reference information
  3. Read them from anywhere in the world.  Take notes.
  4. Share them with colleagues
  5. Do the research – referring to papers as required.
  6. Cite the papers easily in any document preparation system.
  7. Build the reference list easily and accurately.
  8. Be ready to change the reference list in subsequent revisions.
Reference management supports all steps of the research flow and can save dozens of hours for any given paper.  This compounds with the numbers of papers that are produced every year and the number of researchers and collaborators with whom you work.  Despite the associated controversies  journal editors and academic departments will continue to increasingly use bibliometric analysis in key decisions.  Therefore, systematic approaches to reference management is even more necessary.
At the LIINES, we use Mendeley in 2011 after a migration from EndNote.  While EndNote had been the default reference management software for many years, it did have several key disadvantages which others have also noted.
  1. Cost:  Endnote required a license for every LIINES researcher at a relatively hefty price tag.  Sharing with collaborators was an every harder proposition.  Furthermore, yearly upgrade licenses was an even tougher pill to swallow.
  2. PDF Organization:  Managing the filesystem associated with PDF files of all the references is a big challenge.  EndNote did not provide a headache-free solution to this.  Even worse, an EndNote database could lose links to PDF files making it quite difficult to find again.
  3. Collaboration & Sharing:  The above challenges were compounded when it came to share Endnote Libraries across the LIINES.  Endnote sharing through Dropbox across multiple operating systems can get quite hairy!
  4. Proprietary Platform & Database:  When reference databases get large, one increasingly becomes interested in automating tasks for its management.   While EndNote does provide plenty of built in automated functionality, the power user ultimately does need to manage records automatically.
Of course, when migrating from one reference management system to another, it is important to make an educated well-researched decision.  The folks at PhdOnTrack.net have provided an excellent introduction.  The University of Rhode Island library has made a comparison of leading options, while Wikipedia provide a comprehensive comparison
Ultimately, Mendeley did come out on top @ the LIINES for a number of reasons.
  1. Cost:  The Mendeley desktop application is free!  This meant that every LIINES researcher could work individually without paying a penny.  That said, the associated cost was in the cloud-based monthly data storage plan.   While this was a recurring cost, Mendeley’s “Solar System”, “Milky Way”, and “Big Bang” subscription plans were very much priced reasonably.   Since Elsevier’s purchase of Mendeley, the cost of new plans has risen; perhaps out of reach for many.  Fortunately, with a little computer savvy one could also use other cloud-based storage services like Dropbox or Google Drive to easily store and share reference libraries.  Alternatively, many institutions including MIT have recognized the need to provide a uniform platform for their researchers and so have purchased Mendeley Institutional Edition.
  2. PDF Organization:  Probably one of Mendeley’s strongest features is its ability to automatically name and organize PDF files based upon key reference information such as Author Name, Year, and Title.  This became a headache free solution.
  3. Collaboration & Sharing:  Another real strength of Mendeley’s is its recognition of Web 2.0 and social media.   Mendeley databases are easily shared and synchronized between multiple computers, operating systems, tablets, smart phones, and users in a seamless way.   For the LIINES, this meant native support for Windows, Mac OS X, Linux, iOS, and Android for dozens of researchers across the world.
  4. Standard Database:  Finally, Mendeley’s database is written in SQL.  This meant that for the advanced database programmer, Mendeley offers the potential to develop automated scripts to manage reference data.  This particular strength overcomes some of the feature limitations within the Mendeley desktop application itself.
And yet, the migration to Mendeley was not without its disadvantages.
  1. Integration with LatTeX/BibTex:  Mendeley is able to create and maintain an automatically synced BibTeX database file.  However, it provides no user control to the highly important Citation Key!  In the course of regular use, Mendeley can change these citation keys which will then cause LaTeX citation links to break in your document.  Make sure to keep backups of your BibTeX database unless you want to redo all the links!
  2. PDF File Import:  The jury is still out on this one. Mendeley can directly import PDF files.  It will scan the PDF for reference information and insert it into the database.  For many files of standard format (e.g. IEEE, Elsevier journals), it does this accurately.  However, for many others, it creates lots of errors; forcing the researcher to manually correct the information.  At the LIINES, we recommend going to established online reference databases (IEEE XploreScienceDirectCompendex & Google Scholar  to download the associated .ris or .bib files instead.
  3. Batched PDF Import:  Many researchers new to reference management have troves of organized pdf files.  Others are migrating to Mendeley.  Beware that a batch PDF import can create lots of duplicates in the Mendeley database!
  4. Duplicates Management:  Mendeley desktop does provide a “Check for Duplicates” feature but in then requires manual deletion of these duplicates.  For large databases, this can be very time consuming.
  5. Association with Elsevier:  Finally, some academics have chosen to boycott Elsevier’s service on ethical grounds.  Others distinguish Mendeley from its parent company, and then there is official Mendeley perspective from William Gunn   While the LIINES does not participate in this boycott, we recognize its existence out of academic respect and encourage awareness amongst our readership.  Ultimately, one must recognize that Mendeley is now a fully commercial product and service.  For those that maintain reservations, many highly functional, free and open-source reference management solutions continue to exist.
We hope to return to some of these weakness in coming blog posts.
Share this post:

IEEE Statement on Appropriate use of Bibliometric Indicators

The use of bibliometric analysis has become an increasing part of scientific publishing today.   While bibliometric analysis has brought about a degree of quantified objectivity, many have raised concerns about the potential pitfalls of their usage.   We refer our LIINES readership to the recent IEEE Statement on the Appropriate use of Bibliometric Indicators.   The associated video can be found below.



LIINES Website: http://amfarid.scripts.mit.edu

Share this post:

Using Axiomatic Design for the Temporary Housing of Refugees

As we mentioned in a previous blogpost, being a university professor at Masdar Institute sometimes presents opportunities to work on really interesting problems.  One such opportunity arose out of the ESM 501 System Architecture class in which students are encouraged to use Axiomatic Design towards final projects about their ongoing research.  Naturally, when Lindsey Gilbert presented to Prof. Farid the idea of using Axiomatic Design to help house refugees, he became quite interested.

We see many humanitarian crises around the world that sadly generate refugee populations.  Syria, Darfur, Pakistan and the Philippines are but a few trying examples.  The humanitarian challenge of meeting the basic needs of these refugee populations ultimately translates to a design challenge as well.  How can these refugees be quickly sheltered in adequate housing?   Refugee housing — by nature — is temporary.  It must be easily erected in response to the dynamic conditions but also just as easily dismantled to avoid the creation of ghettos long after the news cycle has shifted its spotlight to some other purpose.  But the temporary nature of this housing can not diminish the need for durability.  While the often depicted footage of refugee tents give some protection from the elements, rarely can these “first-responding” structures last for more than week or two.  For refugees, the road to normalcy begins with more solid structures that provide a sense of physical and emotional security — a place from which to literally rebuild.

Lindsey Gilbert’s work used Axiomatic Design to propose temporary housing built up of reconfigurable modules arranged into a product platform.  It also recognized that a good design would have to avoid the “one-size-fits-all” pitfalls of many “first-responding” structures.  At the heart of the concept was a “studio” module serving all of a person’s basic needs.   More advanced modules such as a bedrooms, kitchens, and bathrooms could be attached with standard interfaces to respond to the customized needs of couples and larger refugee families.  The work was ultimately published in the 2013 International Conference on Axiomatic Design and received an honorable mention for best paper.  The full text can be found through the LIINES website publication page.

Interestingly, Lindsey Gilbert’s work represented one of the first times that Axiomatic Design had been applied to a civil engineering application domain.   Present in the room were the organizers of the 2nd International Workshop on Design in Civil and Environmental Engineering.  Lindsey’s work drew sufficient attention that he was ultimately invited to write a second paper on the application of axiomatic design to civil engineering applications.

As part of his master’s research, Lindsey continues to develop the design of his temporary housing concept and hopes that it will ultimately lead to practical benefits for future migrant populations.


LIINES Websitehttp://amfarid.scripts.mit.edu

Share this post:

The 4 R’s of an Advanced Grid: Resiliency, Reliability, Response & Repair

In this smartgridnews article, Doug Housseman argues that an advanced grid actually requires 4 R’s:  Resiliency, Reliability, Response & Repair.  The four properties are defined and rationalized for the future grid.



LIINES Websitehttp://amfarid.scripts.mit.edu

Share this post:

How Unsynchronized Metronomes are the like the power grid.

If you ever wondered how the power grid works with all of its oscillations and attempts to synchronize power generation and power demand over such a wide area, consider this:

32 Metronomes synchronize together on their own over the span of 5 minutes.  Truly remarkable.

In much the same way, synchronous generators and motors all over the power grid can eventually find synchronicity — that is if you wait long enough without disturbing them.  But then if you can’t wait that long then…well…smart grid of course.


LIINES Websitehttp://amfarid.scripts.mit.edu

Share this post:


Enter your email address to receive notifications of new posts by email.

Join 594 other subscribers