Home » Posts tagged 'Socio-Techno-Economic Systems' (Page 2)

Tag Archives: Socio-Techno-Economic Systems

Searching for Smart City LIINES

Today, Monday October 26th 2015, the first International Smart Cities Conference begins in Guadalajara, Mexico and will continue until Wednesday October 28th.  It is the premier annual conference sponsored by the IEEE Smart Cities Initiative.  Smart Cities are innovative, conceptual, and city-wide technology-human-infrastructure integration platforms.  The conference brings a broad perspective to Smart Cities drawing from a variety of disciplines.  This is evidenced by its 9 tracks including:
  1. Smart Grids
  2. Internet of Things (IoT)
  3. Smart Homes & Buildings
  4. Smart Transport
  5. Smart Environment,
  6. Smart Manufacturing & Logistics
  7. Open Data
  8. Smart Health
  9. Smart Citizens
Here, at the LIINES, the concept of Smart Cities is one to which we have been paying attention for quite some time.  Naturally, with the four research themes of Smart Power Grids, Energy-Water Nexus, Transportation-Electrification Systems, and Industrial Energy Management, we believe that the LIINES has a lot to contribute to the development of intelligent infrastructure in cities of the future.   Prof. Amro M. Farid has been nominated to the IEEE Smart Cities Conference steering committee and also serves as the Workshop & Tutorials co-chair.  He is also track chair for the Smart Grids track to be held all day today.
Interested readers can join the IEEE Smart City Initiative and its associated LinkedIn group.   Additionally, the conference organizers will be live-tweeting on Twitter #IEEESmartCities, #ISC2.  Join us in the developing the Smart Cities of the Future.
WhiteLogo2
Share this post:

The All-New Dartmouth LIINES Website

In  a recent blogpost, we wrote how the LIINES is moving to Darmouth.  Naturally, when a lab moves so does its website!   The new LIINES website will now be found at http://engineering.dartmouth.edu/liines but will continue to be mirrored at the original MIT website (http://amfarid.scripts.mit.edu) in recognition of our continued collaborative research there.
We look forward to updating the LIINES website to reflect the lab’s continued development.
WhiteLogo2
Share this post:

The LIINES seeks Quantitatively-Minded Dartmouth Undergrad for Smart Grid Research Competition

The LIINES seeks 1-2 quantitatively-minded Dartmouth undergrads for participation in a smart grid research competition.  This work is a direct extension of our prior work in the smart power grid research theme.   The competition involves multi-agent system negotiation techniques as applied to power system operations and management.  The work can serve as part of a senior thesis or an undergraduate research opportunity.
The successful student(s) will be driven by a sincere interest in the smart grid field and have an affinity to object-oriented programming.   Engineering science or computing science majors are preferred although preparations in heavily computational disciplines such as physics, applied mathematics, and economics are welcome.  A prior portfolio in an object-oriented programming language is required.  C++ is specifically preferred.   More senior undergraduate students are preferred although initiative, interest, and programming fluency will be the determining criteria.

Interested students may contact Prof. Amro M. Farid for further information and an interview. 

WhiteLogo2
Share this post:

The LIINES is moving to Dartmouth

After four years at the Masdar Institute of Science and Technology, the Laboratory for Intelligent Integrated Networks of Engineering Systems is moving to the Thayer School of Engineering at Dartmouth!  The move comes as Amro M. Farid assumes his new appointment as an Associate Professor of Engineering at the Thayer School.
As one of the prestigious Ivy League universities, Dartmouth is consistently ranked amongst America’s top dozen universities.  Moreover, the Thayer School of Engineering has several features that when taken together make a well-customized home for the LIINES.   It:
As the LIINES makes its move to Dartmouth, its important to reflect upon some of its achievements in the last four years.  From its initial focus on smart power grids, it’s research program has expanded to address the application of control, automation and information technology to intelligent energy systems.  This has meant the development of three additional research themes namely:
These efforts have lead to several notable outputs.  In research publications, these include 17 journal papers since January 2014 with an average impact factor of 3.874, 2 books, 4 book chapters and 43 conference papers.  In teaching, two new courses were developed ESM 501 System Architecture and ESM 616 Techno-Economic Analysis in Power System Operations.  We are happy that students at the Masdar Institute consistently rated both of these courses highly.  The LIINES has also increasingly taken on an international profile with active leadership in the IEEE Control Systems Society (CSS) Technical Committee on Smart Grids, the IEEE Systems, Man & Cybernetics (SMC) Society Technical Committee on Intelligent Industrial Systems, and the Council of Engineering System Universities (CESUN).
Of course, the LIINES’s productivity is largely due to its students.  And so this is also a moment to recognize their hard work and dedication.  This began with the 2013 cohort  Apoorva Santhosh, Reshma Francy, Reem Al Junaibi, Aramazd Muzhikyan continued to William Lubega in 2014 and more recently Deema Allan, Wester Schoonenberg, and Halima Abdulla.  Thanks to the support of Prof. Kamal Youcef-Toumi, their MIT student colleagues Hussein Abdelhalim, Fang-Yu Liu, and Bo Jiang have also been instrumental in fostering a collaborative international atmosphere despite the time zone hurdles.  Each of these students has made strong research contributions to the growth of the lab and have gone on to successful careers beyond graduation.
Going forward, the LIINES will continue to work in the intelligent energy systems area as part of the Thayer School’s commitment to energy and complex systems.   That said, the LIINES members at Masdar will remain as such and will continue their research in the spirit of international collaboration as their MIT student colleagues have done in the past.  Dr. Toufic Mezher, Professor of Engineering Systems & Management has kindly agreed to coordinate the LIINES student members as they complete their degrees.   Naturally, we will also continue to  collaboration with the MIT Mechanical Engineering Department and more specifically Prof. Kamal Youcef-Toumi, the Mechatronics Research Laboratory and the Center for Clean Water & Energy.
We’re looking forward to an exciting new 2015-16 academic year at the LIINES.  Stay tuned for more!
Share this post:

Duke Energy on Analytics and the Internet of Things

It’s been a long time since 2003 when the concept of the Internet of Things was first proposed by U. of Cambridge Auto-ID Laboratory.  At the time, Dr. Amro M. Farid, now head of the Laboratory for Intelligent Integrated Networks of Engineering Systems, was a doctoral student investigating how RFID technology enabled intelligent products within reconfigurable manufacturing systems.  The Internet of Things was being applied primarily in the manufacturing and supply chain domain.

Since then, the Internet of Things concept has taken hold not just in manufacturing systems and supply chains but nearly every industrial system domain including energy.    Every “thing” or “device” has the potential to be connected via an intelligent sensor so as to make decisions — be they centralized within an operations control center — or distributed amongst artificially intelligent multi-agent systems.   The Internet of Things concept has the potential to fundamentally transform industrial systems.

Have a look at Duke Energy’s take on the Internet of Things:

The LIINES is proud to have been working in this area since its inception and continue to do so.  More information on our research can be found on the LIINES website.

WhiteLogo2

LIINES Websitehttp://amfarid.scripts.mit.edu

Share this post:

Journal Paper Accepted at ISA Transaction: Event Triggered State Estimation Techniques for Power Systems with Integrated Variable Energy Resources

The LIINES is happy to announce that ISA Transactions has accepted our recent paper entitled: Event Triggered State Estimation Techniques for Power Systems with Integrated Variable Energy Resources.  The paper is authored by Reshma C. Francy, Prof. Amro M. Farid and Prof. Kamal Youcef-Toumi.
In recent years, we have had the opportunity to contribute to two large studies that present visions of the future smart grid:  The MIT Future of the Electric Grid Study, and the IEEE Vision for Smart Grid Controls: 2030 and Beyond.  Both of these works emphasized that in order for the future grid to be truly smart, it has to be responsive, dynamic, adaptive and flexible.  This is the case even when highly variable renewable energy sources sources are plugged in.   The first step in achieving this vision is having greater “situational awareness” — knowing what is going on when and where in the grid.
OCC
For decades, state estimation has been a critical technology in achieving such situational awareness for power system operators.   Over time, it has become quite the mature technology. But, the integration of renewable energy changes all that.  Not only does it introduce rapidly changing behavior into the grid; but it also does so in the low voltage distribution system where state estimation is not usually applied.   The conventional solution is to not just monitor the grid faster but also for the entire power grid all the way down to the low voltages.  That means that not only do all the power grid’s measurements have to be gathered from across power grid’s geography but they also have to computed at an ever faster rate.   This is an exponentially growing problem  — hardly a solution befitting a future “smart” grid.
This paper seeks to address these two requirements in a practical way.   The idea is to use a concept called “event-triggering”.  It takes advantage of the fact that the wind doesn’t always blow and the sun doesn’t always shine.  When local power grid conditions are highly variable, say at a wind turbine or solar panel, a “trigger” will kick in telling the state estimator to run.  But when the power grid is relatively stable, the new state estimator will use a simplified linear approach based upon the last time the full state estimator was run.  Relative to traditional state estimation, this simple solution has been shown to reduce computational time by 90% in numerical case studies.
While ultimately, in the long term, the smart grid will require a fundamental “rethink” in how to approach state estimation, monitoring, and situational awareness, this solution demonstrates how traditional state estimation techniques can be enhanced for future smart grid applications.
A full reference list of smart grid research at LIINES can be found on the LIINES publication page: http://amfarid.scripts.mit.edu

WhiteLogo2

LIINES Website: http://amfarid.scripts.mit.edu

Share this post:

Prof. Amro M. Farid gives invited lecture at MIT Transportation Seminar Series

On December 5, 2014, Prof. Amro M. Farid gave an invited lecture at the MIT Transportation Seminar Series (Cambridge, MA, USA).   The presentation entitled:  “Intelligent Transportation-Energy Systems for Future Large Scale Deployment of Electrified Transportation” featured the LIINES’ latest research in transportation electrification.

The presentation advocates an integrated approach to transportation and energy management.  At its core, the intelligent transportation energy system (ITES) requires a new transportation electrification assessment methodology that draws upon microscopic traffic simulation, power grid dynamics, and Big Data-Driven use case modeling. Such an ITES would come to include coupled operations management decisions including: vehicle dispatching, vehicle routing, charging queue management, coordinated charging, and vehicle-to-grid ancillary services.  The presentation also featured the results from the first full scale electric vehicle integration study which was recently conducted for a taxi-fleet use case in Abu Dhabi.   The study suggests a close collaboration between the Abu Dhabi Department of Transportation and the Abu Dhabi Water and Electricity Authority in future large scale deployments of electrified transportation.

The presentation draws heavily from several LIINES publications including the UAE State of Energy Report, the UAE State of the Green Economy Report, the first hybrid dynamic model for transportation electrification.  The results of this first full-scale study were first presented publicly at the 2nd IEEE International Conference on Connected Vehicles & Expo held December 2-6, 2013 in Las Vegas, NV, USA, and the Gulf Traffic Conference held December 9-10 2013 in Dubai, UAE.  These presentations demonstrated a successful collaborative project between Masdar Institute, the Abu Dhabi Department of Transportation, and Mitsubishi Heavy Industries.

In depth materials on LIINES research on transportation electrification can be found on the LIINES publication page:  http://amfarid.scripts.mit.edu

WhiteLogo2

LIINES Website: http://amfarid.scripts.mit.edu

Share this post:

Journal Paper Accepted at Applied Energy Journal: Quantitative engineering systems modeling and analysis of the energy-water nexus

The LIINES is happy to announce that Applied Energy Journal has accepted our recent paper entitled:  “Quantitative engineering systems modeling and analysis of the energy–water nexus” for publication.  The paper is authored by William N. Lubega and Prof. Amro M. Farid.  

Electric power is required to extract, condition, convey, dispose of and recycle water for human use. At the same time, the bulk of global electricity generation capacity uses water as a heat sink or prime mover. This energy-water nexus is of growing importance due to increased demand for water and electricity; distortion of the temporal and spatial availability of fresh water due to climate change; as well as various drivers of more energy-intense water supply for example increased wastewater treatment requirements, and more water-intense electricity generation for example emissions control technologies at power plants.

water-energy_lg

There are several notable published studies on this nexus. At a technology level, there have been attempts to optimize coupling points between the electricity and water systems to reduce the water-intensity of technologies in the former and the energy-intensity of technologies in the latter. Empirical determinations of the electricity-intensity of water technologies and the water-intensity of electricity technologies have been reported and analyzed. Various models that enable the exploration of the water resource implications of defined electricity sector development pathways and thus support the analysis of various water and electricity policies have also been developed. To our knowledge however, a transparent physics-based approach that interfaces a model of the electricity system to models of the municipal water and wastewater systems enabling an input-output analysis of these three systems in unison has not been presented. Such a modeling approach would support integrated control applications as well as integrated planning without a priori specification of development pathways, for example through optimization.

A paper recently published by the LIINES in Applied Energy titled Quantitative engineering systems modeling and analysis of the energy–water nexus presents such a systems-of-system model. In this work, bond graphs are used to develop models that characterize the salient transmissions of matter and energy in and between the electricity, water and wastewater systems as identified in the reference architecture. Bond graphs, which are graphical representations of physical dynamic systems, were chosen as the modeling tool as they facilitate the inter-energy-domain modeling necessitated by the heterogeneous nature of the energy-water nexus. Furthermore they clearly identify causality and readily allow for model enhancement as required by applications. The developed models, when combined, make it possible to relate a region’s energy and municipal water consumption to the required water withdrawals in an input-output model.  This paper builds on another LIINES publication entitled “A Reference Architecture for the Energy-Water Nexus” found in the IEEE Systems Journal.

lubeg1

 

This research is of particular significance to countries in the Gulf Cooperation Council, all of which have limited fresh water resources and thus depend on energy-expensive desalination to meet a large portion of their water needs. This dependence enhances the degree of coupling between the electricity and water systems and thus the associated vulnerability concerns. Furthermore, motivated by the cogeneration of electric power and desalinated water, combined electricity and water authorities have been established in the region. The multi-energy domain model developed in this work is therefore of immediate relevance to the planning and control efforts of these existing institutions.

 

About the Author:

William N. Lubega conducted this research in collaboration with his Master’s thesis advisor Prof. Amro M. Farid in LIINES at the Masdar Institute of Science & Technology Engineering Systems & Management Department.  William is now a doctoral research assistant at the University of Illinois Urbana-Champaign Civil & Environmental Engineering department as part of the Energy-Water-Environment Sustainability Track.  There, he continues his energy-water nexus research in the Stillwell Research Group.

A full reference list of energy-water nexus research at LIINES can be found on the LIINES publication page: http://amfarid.scripts.mit.edu

WhiteLogo2

LIINES Website: http://amfarid.scripts.mit.edu

Share this post:

Hybrid Dynamic Model for Transportation Electrification Published at the 2014 American Control Conference

Having studied the Abu Dhabi transportation systems for several years, it became clear to us that the true success of electrified transportation was its successful integration with the infrastructure systems that support them.  Left unmanaged electric vehicles may suffer from delays due to charging or cause destabilizing charging loads on the electrical grid. While many works have sought to mitigate these effects with advanced functionality such as coordinated charging, vehicle-to-grid stabilization, and charging queue management, few works have assessed these impacts as a holistic transportation-electricity nexus. To this effect, the 2014 American Control Conference (ACC) has recently published our paper on a hybrid dynamic model for transportation electrification.   Unlike traditional microscopic traffic simulators, this model considers stationary charging and online charging (while moving) as an integral part of the model rather than add-on functionality.  Thus is lends itself to usage by EV fleet operators to not just assess but also improve their operations & control.  It may also be used to coordinate the planning and operation transportation and electrical power infrastructure.

In depth materials on LIINES research on transportation electrification can be found on the LIINES publication page:  http://amfarid.scripts.mit.edu

WhiteLogo2

LIINES Website: http://amfarid.scripts.mit.edu

Share this post:

Journal Paper Accepted at the Energy Journal: The Impact of Storage Facility Capacity and Ramping Capabilities on the Supply Side of the Energy-Water Nexus

The LIINES is happy to announce that the Energy Journal has accepted our recent paper entitled:  The Impact of Storage Facility Capacity and Ramping Capabilities on the Supply Side of the Energy-Water Nexus.  The paper is authored by Apoorva Santhosh, Prof. Amro M. Farid and Prof. Kamal Youcef-Toumi.  It builds upon an earlier publication entitled:  Real-Time Economic Dispatch for the Supply Side of the Energy-Water Nexus which was summarized in an earlier blog post.

As previous blog posts have discussed, the topic of the energy-water nexus is timely.  In the Gulf Cooperation Council nations, it is of particular relevance because of the hot and arid climate.  Water scarcity is further aggravated high energy demands for cooling.  The GCC nations, however, have a tremendous opportunity in that they often operate their power and water infrastructure under a single operational entity.  Furthermore, the presence of cogeneration facilities such as Multi-Stage Flash desalination facilities fundamentally couple the power and water grids.

This paper expands upon the previously published economic dispatch problem to now include the impact of ramping rates and storage capacities.  The latter is shown to alleviate binding production constraints and flatten production levels to achieve lower costs.   Three cases studies are presented; a base case, a second case inspired by Singapore’s limited water storage availability, and a third case relevant to countries in the Middle East where water storage facilities can be readily constructed. Storage facilities are shown to reduce total operating costs by up to 38% and lead to less variable daily production suggesting that they have an important role to play in the optimization of the energy-water nexus.

A full reference list of energy-water nexus research at LIINES can be found on the LIINES publication page: http://amfarid.scripts.mit.edu

WhiteLogo2

LIINES Website: http://amfarid.scripts.mit.edu

Share this post:

Subscribe

Enter your email address to receive notifications of new posts by email.

Join 592 other subscribers